{"title":"Multi-context Physical Computing","authors":"Alexandra Maximova","doi":"10.1145/3587103.3594147","DOIUrl":null,"url":null,"abstract":"The use of microcontroller boards such as the Calliope Mini and BBC micro:bit is becoming increasingly popular in schools due to their versatility and affordability. This doctoral research aims to investigate the effectiveness and motivational potential of using microcontroller boards to introduce basic programming concepts to upper primary and lower secondary school students using Python. The primary focus is on the multi-context nature of microcontroller boards, exploring whether teaching programming concepts in different contexts, such as music, video games, and autonomous driving, can motivate a broader population of students compared to a single-context curriculum, such as Turtle Graphics or autonomous mobile robots. The research employs an educational design-based research approach. In the first cycle, a curriculum consisting of six lessons was developed and piloted in the context of gifted pull-out activities. The preliminary exploratory pilot study provides qualitative findings on students' responses to the curriculum, and algorithmic thinking gains were measured using a pre- and post-test. The results suggest that the curriculum has the potential to be an effective and engaging way to introduce basic programming concepts and that further research is needed to confirm these findings for larger populations. In the next educational design-based research cycle we plan to refine our measurement instruments and study design.","PeriodicalId":366365,"journal":{"name":"Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 2","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587103.3594147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The use of microcontroller boards such as the Calliope Mini and BBC micro:bit is becoming increasingly popular in schools due to their versatility and affordability. This doctoral research aims to investigate the effectiveness and motivational potential of using microcontroller boards to introduce basic programming concepts to upper primary and lower secondary school students using Python. The primary focus is on the multi-context nature of microcontroller boards, exploring whether teaching programming concepts in different contexts, such as music, video games, and autonomous driving, can motivate a broader population of students compared to a single-context curriculum, such as Turtle Graphics or autonomous mobile robots. The research employs an educational design-based research approach. In the first cycle, a curriculum consisting of six lessons was developed and piloted in the context of gifted pull-out activities. The preliminary exploratory pilot study provides qualitative findings on students' responses to the curriculum, and algorithmic thinking gains were measured using a pre- and post-test. The results suggest that the curriculum has the potential to be an effective and engaging way to introduce basic programming concepts and that further research is needed to confirm these findings for larger populations. In the next educational design-based research cycle we plan to refine our measurement instruments and study design.