H. Aihara, M. Hazumi, H. Ishino, J. Kaneko, Y. Li, D. Marlow, S. Mikkelsen, D. Nguyen, E. Nygaard, H. Tajima, J. Talebi, G. Varner, H. Yamamoto, M. Yokoyama
{"title":"Development of front-end electronics for Belle SVD Upgrades","authors":"H. Aihara, M. Hazumi, H. Ishino, J. Kaneko, Y. Li, D. Marlow, S. Mikkelsen, D. Nguyen, E. Nygaard, H. Tajima, J. Talebi, G. Varner, H. Yamamoto, M. Yokoyama","doi":"10.1109/NSSMIC.2000.949903","DOIUrl":null,"url":null,"abstract":"Essential to the ongoing improvement in the vertexing capability of the Belle detector at the KEK-B Factory are evolutionary enhancements to the Silicon Vertex Detector (SVD). A critical component of this improvement has been the refinement of the successful Viking Architecture (VA) front-end electronics for adaptation to the high-luminosity, B-Factory environment. Specifically, improvements have focussed on the areas of improving radiation hardness and reducing the minimum shaping time. The adjustments allow for a substantially longer SVD lifetime at peak performance and the minimization of background occupancy, respectively. In addition, to increase the strip yield of our sensors, we have implemented two different techniques to allow for DC coupling of the VA chips. Results are reported on the success of this R&D program.","PeriodicalId":445100,"journal":{"name":"2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2000.949903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Essential to the ongoing improvement in the vertexing capability of the Belle detector at the KEK-B Factory are evolutionary enhancements to the Silicon Vertex Detector (SVD). A critical component of this improvement has been the refinement of the successful Viking Architecture (VA) front-end electronics for adaptation to the high-luminosity, B-Factory environment. Specifically, improvements have focussed on the areas of improving radiation hardness and reducing the minimum shaping time. The adjustments allow for a substantially longer SVD lifetime at peak performance and the minimization of background occupancy, respectively. In addition, to increase the strip yield of our sensors, we have implemented two different techniques to allow for DC coupling of the VA chips. Results are reported on the success of this R&D program.