IoT based Appliances Identification Techniques with Fog Computing for e-Health

Amleset Kelati, I. Dhaou, Aron Kondoro, D. Rwegasira, H. Tenhunen
{"title":"IoT based Appliances Identification Techniques with Fog Computing for e-Health","authors":"Amleset Kelati, I. Dhaou, Aron Kondoro, D. Rwegasira, H. Tenhunen","doi":"10.23919/ISTAFRICA.2019.8764818","DOIUrl":null,"url":null,"abstract":"To improve the living standard of urban communities and to render the healthcare services sustainable and efficient, e-health system is experiencing a paradigm shift. Patients with cognitive discrepancies can be monitored and observed through the analyses of power consumption of home appliances. This paper surveys recent trends in home-based e-health services using metered energy consumption data. It also analyses and summarizes the constant impedance, constant current and constant power (ZIP) approaches for load modelling. The analysis briefly recaptures both non-intrusive and intrusive techniques. The work reports an architecture using IoT technologies for the design of a smart-meter, and fog-computing paradigm for raw processing of energy dataset. Finally, the paper describes the implementation platform based on GirdLAB-D simulation to construct accurate models of household appliances and test the machine-learning algorithm for the detection of abnormal behaviour.","PeriodicalId":420572,"journal":{"name":"2019 IST-Africa Week Conference (IST-Africa)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IST-Africa Week Conference (IST-Africa)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ISTAFRICA.2019.8764818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

To improve the living standard of urban communities and to render the healthcare services sustainable and efficient, e-health system is experiencing a paradigm shift. Patients with cognitive discrepancies can be monitored and observed through the analyses of power consumption of home appliances. This paper surveys recent trends in home-based e-health services using metered energy consumption data. It also analyses and summarizes the constant impedance, constant current and constant power (ZIP) approaches for load modelling. The analysis briefly recaptures both non-intrusive and intrusive techniques. The work reports an architecture using IoT technologies for the design of a smart-meter, and fog-computing paradigm for raw processing of energy dataset. Finally, the paper describes the implementation platform based on GirdLAB-D simulation to construct accurate models of household appliances and test the machine-learning algorithm for the detection of abnormal behaviour.
基于物联网的电子医疗设备识别技术与雾计算
为了提高城市社区的生活水平,并使保健服务可持续和高效,电子保健系统正在经历范式转变。认知差异患者可以通过家用电器的功耗分析进行监测和观察。本文调查了使用计量能源消耗数据的家庭电子卫生服务的最新趋势。并对恒阻抗、恒电流和恒功率(ZIP)方法进行了分析和总结。该分析简要地回顾了非侵入式和侵入式技术。该工作报告了一个使用物联网技术设计智能电表的架构,以及用于能源数据集原始处理的雾计算范式。最后,本文描述了基于GirdLAB-D仿真的实现平台,用于构建精确的家电模型,并对机器学习算法进行异常行为检测测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信