92¢ /MFlops/s, Ultra-Large-Scale Neural-Network Training on a PIII Cluster

Douglas Aberdeen, Jonathan Baxter, R. Edwards
{"title":"92¢ /MFlops/s, Ultra-Large-Scale Neural-Network Training on a PIII Cluster","authors":"Douglas Aberdeen, Jonathan Baxter, R. Edwards","doi":"10.1109/SC.2000.10031","DOIUrl":null,"url":null,"abstract":"Artificial neural networks with millions of adjustable parameters and a similar number of training examples are a potential solution for difficult, large-scale pattern recognition problems in areas such as speech and face recognition, classification of large volumes of web data, and finance. The bottleneck is that neural network training involves iterative gradient descent and is extremely computationally intensive. In this paper we present a technique for distributed training of Ultra Large Scale Neural Networks 1 (ULSNN) on Bunyip, a Linux-based cluster of 196 Pentium III processors. To illustrate ULSNN training we describe an experiment in which a neural network with 1.73 million adjustable parameters was trained to recognize machine-printed Japanese characters from a database containing 9 million training patterns. The training runs with a average performance of 163.3 GFlops/s (single precision). With a machine cost of $150,913, this yields a price/performance ratio of 92.4¢ /MFlops/s (single precision). For comparison purposes, training using double precision and the ATLAS DGEMM produces a sustained performance of 70 MFlops/s or $2.16 / MFlop/s (double precision).","PeriodicalId":228250,"journal":{"name":"ACM/IEEE SC 2000 Conference (SC'00)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2000 Conference (SC'00)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2000.10031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Artificial neural networks with millions of adjustable parameters and a similar number of training examples are a potential solution for difficult, large-scale pattern recognition problems in areas such as speech and face recognition, classification of large volumes of web data, and finance. The bottleneck is that neural network training involves iterative gradient descent and is extremely computationally intensive. In this paper we present a technique for distributed training of Ultra Large Scale Neural Networks 1 (ULSNN) on Bunyip, a Linux-based cluster of 196 Pentium III processors. To illustrate ULSNN training we describe an experiment in which a neural network with 1.73 million adjustable parameters was trained to recognize machine-printed Japanese characters from a database containing 9 million training patterns. The training runs with a average performance of 163.3 GFlops/s (single precision). With a machine cost of $150,913, this yields a price/performance ratio of 92.4¢ /MFlops/s (single precision). For comparison purposes, training using double precision and the ATLAS DGEMM produces a sustained performance of 70 MFlops/s or $2.16 / MFlop/s (double precision).
92 & # 162;/MFlops/s, PIII集群上的超大规模神经网络训练
人工神经网络具有数百万个可调参数和类似数量的训练示例,是解决语音和人脸识别、大量网络数据分类和金融等领域中困难的大规模模式识别问题的潜在解决方案。瓶颈在于神经网络训练涉及迭代梯度下降,计算量极大。在本文中,我们提出了一种在Bunyip(一个基于linux的196个Pentium III处理器集群)上分布式训练超大规模神经网络1 (ULSNN)的技术。为了说明ULSNN训练,我们描述了一个实验,其中训练了一个具有173万个可调参数的神经网络,以从包含900万个训练模式的数据库中识别机器打印的日文字符。训练的平均性能为163.3 GFlops/s(单精度)。机器成本为150,913美元,这产生了92.4美分/MFlops/s(单精度)的性价比。为了进行比较,使用双精度和ATLAS DGEMM的训练产生的持续性能为70 MFlop/s或2.16美元/ MFlop/s(双精度)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信