The Sliced Gaussian Mixture Filter with adaptive state decomposition depending on linearization error

Vesa Klumpp, F. Beutler, U. Hanebeck, D. Fränken
{"title":"The Sliced Gaussian Mixture Filter with adaptive state decomposition depending on linearization error","authors":"Vesa Klumpp, F. Beutler, U. Hanebeck, D. Fränken","doi":"10.1109/ICIF.2010.5711864","DOIUrl":null,"url":null,"abstract":"In this paper, a novel nonlinear/nonlinear model decomposition for the Sliced Gaussian Mixture Filter is presented. Based on the level of nonlin-earity of the model, the overall estimation problem is decomposed into a \"severely\" nonlinear and a \"slightly\" nonlinear part, which are processed by different estimation techniques. To further improve the efficiency of the estimator, an adaptive state decomposition algorithm is introduced that allows decomposition according to the linearization error for nonlinear system and measurement models. Simulations show that this approach has orders of magnitude less complexity compared to other state of the art estimators, while maintaining comparable estimation errors.","PeriodicalId":341446,"journal":{"name":"2010 13th International Conference on Information Fusion","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2010.5711864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, a novel nonlinear/nonlinear model decomposition for the Sliced Gaussian Mixture Filter is presented. Based on the level of nonlin-earity of the model, the overall estimation problem is decomposed into a "severely" nonlinear and a "slightly" nonlinear part, which are processed by different estimation techniques. To further improve the efficiency of the estimator, an adaptive state decomposition algorithm is introduced that allows decomposition according to the linearization error for nonlinear system and measurement models. Simulations show that this approach has orders of magnitude less complexity compared to other state of the art estimators, while maintaining comparable estimation errors.
基于线性化误差自适应状态分解的切片高斯混合滤波器
本文提出了一种新的切片高斯混合滤波器的非线性/非线性模型分解方法。根据模型的非线性程度,将整体估计问题分解为“严重”非线性和“轻微”非线性两个部分,采用不同的估计技术进行处理。为了进一步提高估计器的效率,引入了一种自适应状态分解算法,可以根据非线性系统和测量模型的线性化误差进行分解。仿真表明,该方法的复杂性比其他先进的估计器低几个数量级,同时保持相当的估计误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信