A novel tracking method for fast varying subspaces in impulsive noise environments

Jinfeng Zhang, T. Qiu
{"title":"A novel tracking method for fast varying subspaces in impulsive noise environments","authors":"Jinfeng Zhang, T. Qiu","doi":"10.1109/ICSPCS.2016.7843321","DOIUrl":null,"url":null,"abstract":"By employing the MCC (maximum correntropy criterion) based cost function in projection approximation subspace tracking (PAST) algorithm, the MCC-PAST algorithm is deduced which can be utilized for the subspace tracking under impulsive noise environments. The Gaussian transformation technique is combined to further enhance the tracking performance. To handle the fast varying subspaces circumstances, the variable forgetting factor (VFF) technique is developed and incorporated into the algorithm. Simulation results show the robustness of the proposed nonlinear MCC-PAST with VFF algorithm, especially when the GSNR (generalized signal to noise ratio) is fairly low or the underlying noise is extremely impulsive.","PeriodicalId":315765,"journal":{"name":"2016 10th International Conference on Signal Processing and Communication Systems (ICSPCS)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Signal Processing and Communication Systems (ICSPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCS.2016.7843321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

By employing the MCC (maximum correntropy criterion) based cost function in projection approximation subspace tracking (PAST) algorithm, the MCC-PAST algorithm is deduced which can be utilized for the subspace tracking under impulsive noise environments. The Gaussian transformation technique is combined to further enhance the tracking performance. To handle the fast varying subspaces circumstances, the variable forgetting factor (VFF) technique is developed and incorporated into the algorithm. Simulation results show the robustness of the proposed nonlinear MCC-PAST with VFF algorithm, especially when the GSNR (generalized signal to noise ratio) is fairly low or the underlying noise is extremely impulsive.
脉冲噪声环境下快速变化子空间的一种新的跟踪方法
通过在投影逼近子空间跟踪(PAST)算法中引入基于最大相关熵准则的代价函数,推导出可用于脉冲噪声环境下子空间跟踪的MCC-PAST算法。结合高斯变换技术,进一步提高了跟踪性能。为了处理快速变化的子空间情况,提出了可变遗忘因子(VFF)技术并将其引入到算法中。仿真结果表明,采用VFF算法的非线性MCC-PAST具有较好的鲁棒性,特别是在广义信噪比较低或底层噪声极具脉冲性的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信