Wenqi Wei, Jianhuan Wang, Y. Gong, Jin-an Shi, L. Gu, Hongxing Xu, Ting Wang, Jianjun Zhang
{"title":"C/L-Band Emission of InAs QDs Monolithically Grown on Ge Platform","authors":"Wenqi Wei, Jianhuan Wang, Y. Gong, Jin-an Shi, L. Gu, Hongxing Xu, Ting Wang, Jianjun Zhang","doi":"10.1364/ACPC.2017.SU2C.4","DOIUrl":null,"url":null,"abstract":"In recent years, the growing demand for silicon based light sources has boosted the research field of III-V/IV hybrid lasers. Here, the C/L-band light emission (1.53 μm-1.63 μm) of InAs/In0.25Ga0.75As quantum dots (QDs) epitaxially grown on Ge substrate by solid-source molecular beam epitaxy (MBE) is reported. By hybrid III- V/IV epitaxial growth, ultra-thin and anti-phase domains (APD) free III-V materials are achieved on Ge substrate. Step-graded InGaAs metamorphic buffer layers are applied to reduce the strain in InAs QDs in order to extend the emission wavelength. At last, a high quality InAs/In0.25Ga0.75As QD structure on Ge(001) substrate is obtained, which has a strong C/L-band emission centered at the wavelength of 1.6 μm with a full-width- half-maximum (FWHM) of 57 meV at room temperature.","PeriodicalId":285199,"journal":{"name":"2017 Asia Communications and Photonics Conference (ACP)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia Communications and Photonics Conference (ACP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/ACPC.2017.SU2C.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the growing demand for silicon based light sources has boosted the research field of III-V/IV hybrid lasers. Here, the C/L-band light emission (1.53 μm-1.63 μm) of InAs/In0.25Ga0.75As quantum dots (QDs) epitaxially grown on Ge substrate by solid-source molecular beam epitaxy (MBE) is reported. By hybrid III- V/IV epitaxial growth, ultra-thin and anti-phase domains (APD) free III-V materials are achieved on Ge substrate. Step-graded InGaAs metamorphic buffer layers are applied to reduce the strain in InAs QDs in order to extend the emission wavelength. At last, a high quality InAs/In0.25Ga0.75As QD structure on Ge(001) substrate is obtained, which has a strong C/L-band emission centered at the wavelength of 1.6 μm with a full-width- half-maximum (FWHM) of 57 meV at room temperature.