Multi-pose Facial Expression Recognition Using Transformed Dirichlet Process

Feifei Zhang, Qi-rong Mao, Ming Dong, Yongzhao Zhan
{"title":"Multi-pose Facial Expression Recognition Using Transformed Dirichlet Process","authors":"Feifei Zhang, Qi-rong Mao, Ming Dong, Yongzhao Zhan","doi":"10.1145/2964284.2967240","DOIUrl":null,"url":null,"abstract":"Driven by recent advances in human-centered computing, Facial Expression Recognition (FER) has attracted significant attention in many applications. In this paper, we propose a novel graphical model, multi-level Transformed Dirichlet Process (ml-TDP), for multi-pose FER. In our approach, pose is explicitly introduced into ml-TDP so that separate training and parameter tuning for each pose is not required. In addition, ml-TDP can learn an intermediate facial expression representation subject to geometric constraints. By sharing the pool of spatially-coherent features over expressions and poses, we provide a scalable solution for multi-pose FER. Extensive experimental result on benchmark facial expression databases shows the superior performance of ml-TDP.","PeriodicalId":140670,"journal":{"name":"Proceedings of the 24th ACM international conference on Multimedia","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2964284.2967240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Driven by recent advances in human-centered computing, Facial Expression Recognition (FER) has attracted significant attention in many applications. In this paper, we propose a novel graphical model, multi-level Transformed Dirichlet Process (ml-TDP), for multi-pose FER. In our approach, pose is explicitly introduced into ml-TDP so that separate training and parameter tuning for each pose is not required. In addition, ml-TDP can learn an intermediate facial expression representation subject to geometric constraints. By sharing the pool of spatially-coherent features over expressions and poses, we provide a scalable solution for multi-pose FER. Extensive experimental result on benchmark facial expression databases shows the superior performance of ml-TDP.
基于变换狄利克雷过程的多姿态面部表情识别
在以人为中心的计算机技术的推动下,面部表情识别(FER)在许多应用中引起了极大的关注。在本文中,我们提出了一种新的图形模型——多级变换狄利克雷过程(ml-TDP)。在我们的方法中,姿态被明确地引入到ml-TDP中,这样就不需要对每个姿态进行单独的训练和参数调整。此外,ml-TDP可以学习受几何约束的中间面部表情表示。通过在表情和姿态上共享空间相干特征池,我们提供了一个可扩展的多姿态FER解决方案。在基准面部表情数据库上的大量实验结果表明,ml-TDP具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信