Energy-Based Maximum Likelihood Detector for GSSK in MIMO-ABC Systems

Ashwini H. Raghavendra, Anagha K. Kowshik, Sanjeev Gurugopinath, S. Muhaidat, C. Tellambura
{"title":"Energy-Based Maximum Likelihood Detector for GSSK in MIMO-ABC Systems","authors":"Ashwini H. Raghavendra, Anagha K. Kowshik, Sanjeev Gurugopinath, S. Muhaidat, C. Tellambura","doi":"10.1109/SPCOM55316.2022.9840815","DOIUrl":null,"url":null,"abstract":"We propose a novel, low complexity energy-based maximum likelihood (EML) detector for a generalized space shift keying (GSSK)-enabled multiple-input multiple-output (MIMO) ambient backscatter communication (ABC) system. The proposed scheme exploits the multiple antenna structure of the system to achieve a lower error rate performance than the conventional single-antenna ABC systems. The proposed EML GSSK detector does not require the perfect knowledge of the ambient source signal. To gain insights into the performance of the proposed scheme, we derive the exact pairwise error probability (PEP) of the EML detector, and further obtain an upper bound on the probability of error. We also derive a simple asymptotic PEP expression, as the number of antennas of the reader becomes large. We validate our analysis through Monte Carlo simulations, and show that the performance loss due to the approximations employed in our analysis is small. The performance of EML detector is also compared with the conventional ML detector and the loss in performance is studied.","PeriodicalId":246982,"journal":{"name":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM55316.2022.9840815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel, low complexity energy-based maximum likelihood (EML) detector for a generalized space shift keying (GSSK)-enabled multiple-input multiple-output (MIMO) ambient backscatter communication (ABC) system. The proposed scheme exploits the multiple antenna structure of the system to achieve a lower error rate performance than the conventional single-antenna ABC systems. The proposed EML GSSK detector does not require the perfect knowledge of the ambient source signal. To gain insights into the performance of the proposed scheme, we derive the exact pairwise error probability (PEP) of the EML detector, and further obtain an upper bound on the probability of error. We also derive a simple asymptotic PEP expression, as the number of antennas of the reader becomes large. We validate our analysis through Monte Carlo simulations, and show that the performance loss due to the approximations employed in our analysis is small. The performance of EML detector is also compared with the conventional ML detector and the loss in performance is studied.
基于能量的MIMO-ABC系统GSSK极大似然检测器
我们提出了一种新颖的、低复杂度的基于能量的最大似然(EML)探测器,用于支持广义空间移位键控(GSSK)的多输入多输出(MIMO)环境反向散射通信(ABC)系统。该方案利用系统的多天线结构,实现了比传统单天线ABC系统更低的误码率性能。提出的EML GSSK检测器不需要完全了解环境源信号。为了深入了解该方案的性能,我们推导了EML检测器的精确成对错误概率(PEP),并进一步得到了错误概率的上界。我们还推导了一个简单的渐近PEP表达式,当阅读器的天线数量变大时。我们通过蒙特卡罗模拟验证了我们的分析,并表明由于我们的分析中采用的近似导致的性能损失很小。将EML检测器的性能与传统的ML检测器进行了比较,并研究了其性能损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信