SAR target identification using SAR-COM technique

J. Anil Raj, S. M. Idicula, B. Paul
{"title":"SAR target identification using SAR-COM technique","authors":"J. Anil Raj, S. M. Idicula, B. Paul","doi":"10.1109/ICACC48162.2019.8986210","DOIUrl":null,"url":null,"abstract":"Deep learning techniques give good results on target classification of MSTAR dataset. Most of the techniques for SAR target identification use only the magnitude information of the raw SAR data and discard the phase information. Deep convolution neural network has the ability to automatically learn from the complex image generated using both the magnitude and phase information from the radar data. In this paper we are proposing a new method for generating the complex image dataset (SAR-COM) and a deep learning model which automatically classifies targets from MSTAR raw data.","PeriodicalId":305754,"journal":{"name":"2019 9th International Conference on Advances in Computing and Communication (ICACC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International Conference on Advances in Computing and Communication (ICACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACC48162.2019.8986210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Deep learning techniques give good results on target classification of MSTAR dataset. Most of the techniques for SAR target identification use only the magnitude information of the raw SAR data and discard the phase information. Deep convolution neural network has the ability to automatically learn from the complex image generated using both the magnitude and phase information from the radar data. In this paper we are proposing a new method for generating the complex image dataset (SAR-COM) and a deep learning model which automatically classifies targets from MSTAR raw data.
利用SAR- com技术识别SAR目标
深度学习技术在MSTAR数据集的目标分类上取得了较好的效果。大多数SAR目标识别技术只利用原始SAR数据的震级信息,而忽略了相位信息。深度卷积神经网络具有从雷达数据的幅度和相位信息生成的复杂图像中自动学习的能力。在本文中,我们提出了一种生成复杂图像数据集(SAR-COM)的新方法和一个从MSTAR原始数据中自动分类目标的深度学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信