Prediction of DGPS corrections with neural networks

J. Sang, K. Kubik, Lianggang Zhang
{"title":"Prediction of DGPS corrections with neural networks","authors":"J. Sang, K. Kubik, Lianggang Zhang","doi":"10.1109/KES.1997.619409","DOIUrl":null,"url":null,"abstract":"Applies neural network modelling to predicting DGPS (Differential Global Positioning System) corrections. The paper first briefly introduces GPS and DGPS navigation principles and aircraft navigation performance requirements. Following a discussion of the temporal characteristics of the DGPS corrections, a technique for predicting the DGPS corrections based on diagonal recurrent neural network (DRNN) modelling is presented. Numerical examples show that the prediction accuracy is better than 1 m for 10 s prediction and 1.3 m for 30 s prediction, respectively, which can maintain the aircraft navigation at the required accuracy for a period of 30 s.","PeriodicalId":166931,"journal":{"name":"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1997.619409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Applies neural network modelling to predicting DGPS (Differential Global Positioning System) corrections. The paper first briefly introduces GPS and DGPS navigation principles and aircraft navigation performance requirements. Following a discussion of the temporal characteristics of the DGPS corrections, a technique for predicting the DGPS corrections based on diagonal recurrent neural network (DRNN) modelling is presented. Numerical examples show that the prediction accuracy is better than 1 m for 10 s prediction and 1.3 m for 30 s prediction, respectively, which can maintain the aircraft navigation at the required accuracy for a period of 30 s.
基于神经网络的DGPS校正预测
应用神经网络模型预测差分全球定位系统(DGPS)校正。本文首先简要介绍了GPS和DGPS导航原理及飞机导航性能要求。在讨论了DGPS改正量的时间特征的基础上,提出了一种基于对角递归神经网络(DRNN)建模的DGPS改正量预测技术。数值算例表明,10 s预测精度优于1 m, 30 s预测精度优于1.3 m,可使飞机在30 s的时间内保持所需的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信