Sistem Aplikasi Cerdas Klasterisasi Penerima Bantuan Covid-19

Anthony Anggrawan, D. Kurnianingsih, Christofer Satria
{"title":"Sistem Aplikasi Cerdas Klasterisasi Penerima Bantuan Covid-19","authors":"Anthony Anggrawan, D. Kurnianingsih, Christofer Satria","doi":"10.30812/matrik.v21i2.1716","DOIUrl":null,"url":null,"abstract":"Wabah Covid-19 berakibat pada krisis ekonomi masyarakat dan menciptakan kemiskinan dan pengangguran. Hal ini menyebabkan pemerintah Indonesia turun tangan memberikan bantuan Covid-19 bagi masyarakat yang paling terdampak buruk. Namun yang menjadi kesulitan adalah dalam menentukan dengan tepat serta benar kandidat yang layak dan yang tidak layak sebagai penerima bantuan yang masih dilakukan secara manual. Karenanya dibutuhkan solusi untuk mengatasinya. Itulah sebabnya penelitian ini bertujuan membangun sistem dan aplikasi cerdas yang bisa melakukan pengklasterkan kandidat penerima bantuan Covid-19 yang layak, kurang layak dan tidak layak sebagai penerima bantuan Covid-19. Metode yang digunakan dalam penelitian ini untuk klasterisasi adalah metode data mining k-means. Hasil penelitian ini adalah pengklasteran kelayakan penerima bantuan Covid-19 terbagi dalam klaster C0 (penerima bantuan yang layak) sebanyak 53, klaster C1 (cukup layak menerima bantuan) sebanyak 71, dan klaster yang tidak layak sebagai penerima bantuan (C2) sebanyak 76 dari 200 data pengujian. Aplikasi cerdas ang dibangun juga menunjukkan hasil yang sama dengan  pengklasteran yang di lakukan dengan menerapakan metode k-means, sehingga aplikasi cerdas yang dibangun berguna untuk komputerisasi klasterisasi yang layak, kurang layak dan tidak layak sebagai penerima bantuan Covid-19.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v21i2.1716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Wabah Covid-19 berakibat pada krisis ekonomi masyarakat dan menciptakan kemiskinan dan pengangguran. Hal ini menyebabkan pemerintah Indonesia turun tangan memberikan bantuan Covid-19 bagi masyarakat yang paling terdampak buruk. Namun yang menjadi kesulitan adalah dalam menentukan dengan tepat serta benar kandidat yang layak dan yang tidak layak sebagai penerima bantuan yang masih dilakukan secara manual. Karenanya dibutuhkan solusi untuk mengatasinya. Itulah sebabnya penelitian ini bertujuan membangun sistem dan aplikasi cerdas yang bisa melakukan pengklasterkan kandidat penerima bantuan Covid-19 yang layak, kurang layak dan tidak layak sebagai penerima bantuan Covid-19. Metode yang digunakan dalam penelitian ini untuk klasterisasi adalah metode data mining k-means. Hasil penelitian ini adalah pengklasteran kelayakan penerima bantuan Covid-19 terbagi dalam klaster C0 (penerima bantuan yang layak) sebanyak 53, klaster C1 (cukup layak menerima bantuan) sebanyak 71, dan klaster yang tidak layak sebagai penerima bantuan (C2) sebanyak 76 dari 200 data pengujian. Aplikasi cerdas ang dibangun juga menunjukkan hasil yang sama dengan  pengklasteran yang di lakukan dengan menerapakan metode k-means, sehingga aplikasi cerdas yang dibangun berguna untuk komputerisasi klasterisasi yang layak, kurang layak dan tidak layak sebagai penerima bantuan Covid-19.
Covid-19辅助接收器的智能应用程序系统
Covid-19的爆发导致了社会经济崩溃,造成了贫困和失业。这导致印尼政府进行干预,为受灾最严重的社区提供Covid-19的援助。然而,困难在于确定哪些候选人是有价值的,哪些候选人是不值得的,因为这些候选人仍然是手工进行的。因此需要解决方案。这就是为什么本研究的目标是建立一种智能的系统和应用程序,将有价值的、不值得的、不值得作为Covid-19援助候选人的集合到一起。用于索引研究的方法是数据挖掘方法。本研究的结果是,接受Covid-19援助的可行性集群分为53个,C1集群(足够接受援助)分为71个,而不适合接受援助的集群则占试验数据的76个。ang开发的智能应用程序也显示了与k-手段相同的过时过时的过时应用程序的结果,因此,为一个可行的、不太可行的、不适合接受Covid-19的计算机经典化而开发的智能应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信