A Genetic Algorithm Approach for Discovering Diagnostic Patterns in Molecular Measurement Data

D. Schaffer, A. Janevski, M. Simpson
{"title":"A Genetic Algorithm Approach for Discovering Diagnostic Patterns in Molecular Measurement Data","authors":"D. Schaffer, A. Janevski, M. Simpson","doi":"10.1109/CIBCB.2005.1594945","DOIUrl":null,"url":null,"abstract":"The objective of this work is the development of an algorithm that, after training, will be able to discriminate between disease classes in molecular data. The system proposed uses a genetic algorithm (GA) to achieve this discrimination. We apply our method to three publicly available data sets. Two of the data sets are based on microarray data that allow the simultaneous measurement of the expression levels of genes under different disease states. The third data set is based on serum proteomic pattern diagnostics of ovarian cancer using high-resolution mass spectrometry to extract a set of biomarker classifiers. We show how our methodology finds an abundance of different feature models, automatically selecting a subset of discriminatory features, whose classification accuracy is comparable to other approaches considered. This raises questions about how to choose among the many competing models, while simultaneously estimating the prediction accuracy of the chosen models.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

The objective of this work is the development of an algorithm that, after training, will be able to discriminate between disease classes in molecular data. The system proposed uses a genetic algorithm (GA) to achieve this discrimination. We apply our method to three publicly available data sets. Two of the data sets are based on microarray data that allow the simultaneous measurement of the expression levels of genes under different disease states. The third data set is based on serum proteomic pattern diagnostics of ovarian cancer using high-resolution mass spectrometry to extract a set of biomarker classifiers. We show how our methodology finds an abundance of different feature models, automatically selecting a subset of discriminatory features, whose classification accuracy is comparable to other approaches considered. This raises questions about how to choose among the many competing models, while simultaneously estimating the prediction accuracy of the chosen models.
分子测量数据诊断模式的遗传算法研究
这项工作的目标是开发一种算法,经过训练,将能够区分分子数据中的疾病类别。该系统采用遗传算法(GA)来实现这种识别。我们将我们的方法应用于三个公开可用的数据集。其中两个数据集基于微阵列数据,可以同时测量不同疾病状态下基因的表达水平。第三个数据集是基于卵巢癌的血清蛋白质组学模式诊断,使用高分辨率质谱法提取一组生物标志物分类器。我们展示了我们的方法如何找到大量不同的特征模型,自动选择歧视性特征的子集,其分类精度与所考虑的其他方法相当。这就提出了一个问题,即如何在众多相互竞争的模型中进行选择,同时估计所选模型的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信