Approximate alpha-stable Markov Random Fields for video super-resolution

Jin Chen, J. Núñez-Yáñez, A. Achim
{"title":"Approximate alpha-stable Markov Random Fields for video super-resolution","authors":"Jin Chen, J. Núñez-Yáñez, A. Achim","doi":"10.5281/ZENODO.43073","DOIUrl":null,"url":null,"abstract":"In the paper, we present a Bayesian super resolution method that uses an approximation of symmetric alpha-stable (SαS) Markov Random Fields as prior. The approximated SαS prior is employed to perform a maximum a posteriori (MAP) estimation for the high-resolution (HR) image reconstruction process. Compared with other state-of-the-art prior models, the proposed prior can better capture the heavy tails of the distribution of the HR image. Thus, the edges of the reconstructed HR image are preserved better in our method. Since the corresponding energy function is non-convex, the iterated conditional modes (ICM) method is used to solve the MAP estimation. Results indicate a significant improvement over other super resolution algorithms.","PeriodicalId":201182,"journal":{"name":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the paper, we present a Bayesian super resolution method that uses an approximation of symmetric alpha-stable (SαS) Markov Random Fields as prior. The approximated SαS prior is employed to perform a maximum a posteriori (MAP) estimation for the high-resolution (HR) image reconstruction process. Compared with other state-of-the-art prior models, the proposed prior can better capture the heavy tails of the distribution of the HR image. Thus, the edges of the reconstructed HR image are preserved better in our method. Since the corresponding energy function is non-convex, the iterated conditional modes (ICM) method is used to solve the MAP estimation. Results indicate a significant improvement over other super resolution algorithms.
视频超分辨率的近似稳定马尔可夫随机场
在本文中,我们提出了一种贝叶斯超分辨方法,该方法使用了对称α稳定(s - α s)马尔可夫随机场的近似。利用近似的SαS先验对高分辨率(HR)图像重建过程进行最大后验(MAP)估计。与其他最先进的先验模型相比,本文提出的先验模型能够更好地捕获HR图像分布的重尾。因此,我们的方法可以更好地保留重建后的HR图像的边缘。由于相应的能量函数是非凸的,采用迭代条件模式(ICM)方法求解MAP估计。结果表明,与其他超分辨率算法相比,该算法有显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信