Implementasi Jaringan Saraf Tiruan Dalam Prediksi Penjualan Kue pada UD. Mak Kembar Pematang Siantar Dengan Backpropagation

Hendro Sanjaya, Harly Okprana, Bahrudi Efendi Damanik
{"title":"Implementasi Jaringan Saraf Tiruan Dalam Prediksi Penjualan Kue pada UD. Mak Kembar Pematang Siantar Dengan Backpropagation","authors":"Hendro Sanjaya, Harly Okprana, Bahrudi Efendi Damanik","doi":"10.30865/resolusi.v2i5.371","DOIUrl":null,"url":null,"abstract":"UD.Mak Kembar is a shop engaged in the sale of cakes and bread, located in Rambung Merah. Until now, UD. Mak Kembar only uses a simple system in marketing information and recording, causing delays in marketing information and in recording sales calculations. Based on the problems above, the authors design and create a system at UD.Mak Kembar. This system applies predictions in its sales, and is built using an artificial neural network with the Backprogation algorithm. The results obtained with the best architecture 4-5-1 with an iterative process (epoch) during training with an epoch value = 75% and SSE achievement at the time of testing with SSE = 0.23950.","PeriodicalId":115863,"journal":{"name":"Resolusi : Rekayasa Teknik Informatika dan Informasi","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resolusi : Rekayasa Teknik Informatika dan Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30865/resolusi.v2i5.371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

UD.Mak Kembar is a shop engaged in the sale of cakes and bread, located in Rambung Merah. Until now, UD. Mak Kembar only uses a simple system in marketing information and recording, causing delays in marketing information and in recording sales calculations. Based on the problems above, the authors design and create a system at UD.Mak Kembar. This system applies predictions in its sales, and is built using an artificial neural network with the Backprogation algorithm. The results obtained with the best architecture 4-5-1 with an iterative process (epoch) during training with an epoch value = 75% and SSE achievement at the time of testing with SSE = 0.23950.
人工神经网络的实现在UD的蛋糕预测预测。这对双胞胎是做宣传的
UD。Mak Kembar是一家位于Rambung Merah的蛋糕和面包店。直到现在,UD。Mak Kembar在营销信息和记录方面只使用了一个简单的系统,造成了营销信息和记录销售计算的延迟。针对上述问题,笔者设计并实现了一个系统。Mak Kembar。该系统将预测应用于其销售,并使用带有反向传播算法的人工神经网络构建。训练时采用迭代过程(epoch)得到的最佳体系结构4-5-1的结果,epoch值为75%,测试时的SSE成就为SSE = 0.23950。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信