On structural information similarity measurements

Jinmao Wei, Shuqin Wang, Wei Zheng, Jing Wang, Junping You, Jie Zhang, Dan Liu
{"title":"On structural information similarity measurements","authors":"Jinmao Wei, Shuqin Wang, Wei Zheng, Jing Wang, Junping You, Jie Zhang, Dan Liu","doi":"10.1109/GRC.2006.1635770","DOIUrl":null,"url":null,"abstract":"Measuring structural similarities is attracting more and more attention from researchers. In this paper, we define structural information content (SIC) for measuring the structural information of a structure, and introduce topological match degree to measure to what extent a subtree is matched. By recursively computing SICs and thus computing topological match degrees, we evaluate the structural information similarities of data trees to pattern tree. In the paper, we present two algorithms for recursively calculating SICs with computation complexity of O(M), and use examples to instantiate the feasibility of the proposed method.","PeriodicalId":400997,"journal":{"name":"2006 IEEE International Conference on Granular Computing","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2006.1635770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Measuring structural similarities is attracting more and more attention from researchers. In this paper, we define structural information content (SIC) for measuring the structural information of a structure, and introduce topological match degree to measure to what extent a subtree is matched. By recursively computing SICs and thus computing topological match degrees, we evaluate the structural information similarities of data trees to pattern tree. In the paper, we present two algorithms for recursively calculating SICs with computation complexity of O(M), and use examples to instantiate the feasibility of the proposed method.
结构信息相似性测量
结构相似性的测量越来越受到研究者的关注。本文定义了结构信息含量(SIC)来度量结构的结构信息,并引入拓扑匹配度来度量子树的匹配程度。通过递归计算sic,从而计算拓扑匹配度,评估数据树与模式树的结构信息相似度。本文提出了两种递归计算sic的算法,计算复杂度为0 (M),并通过实例说明了所提方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信