Modeling the conflicting demands of parallelism and Temporal/Spatial locality in affine scheduling

O. Zinenko, Sven Verdoolaege, Chandan Reddy, J. Shirako, T. Grosser, Vivek Sarkar, Albert Cohen
{"title":"Modeling the conflicting demands of parallelism and Temporal/Spatial locality in affine scheduling","authors":"O. Zinenko, Sven Verdoolaege, Chandan Reddy, J. Shirako, T. Grosser, Vivek Sarkar, Albert Cohen","doi":"10.1145/3178372.3179507","DOIUrl":null,"url":null,"abstract":"The construction of effective loop nest optimizers and parallelizers remains challenging despite decades of work in the area. Due to the increasing diversity of loop-intensive applications and to the complex memory/computation hierarchies in modern processors, optimization heuristics are pulled towards conflicting goals, highlighting the lack of a systematic approach to optimizing locality and parallelism. Acknowledging these conflicting demands on loop nest optimization, we propose an algorithmic template capable of modeling the multi-level parallelism and the temporal/spatial locality of multiprocessors and accelerators. This algorithmic template orchestrates a collection of parameterizable, linear optimization problems over a polyhedral space of semantics-preserving transformations. While the overall problem is not convex, effective algorithms can be derived from this template delivering unprecedented performance portability over GPU and multicore CPU. We discuss the rationale for this algorithmic template and validate it on representative computational kernels/benchmarks.","PeriodicalId":117615,"journal":{"name":"Proceedings of the 27th International Conference on Compiler Construction","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th International Conference on Compiler Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178372.3179507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

The construction of effective loop nest optimizers and parallelizers remains challenging despite decades of work in the area. Due to the increasing diversity of loop-intensive applications and to the complex memory/computation hierarchies in modern processors, optimization heuristics are pulled towards conflicting goals, highlighting the lack of a systematic approach to optimizing locality and parallelism. Acknowledging these conflicting demands on loop nest optimization, we propose an algorithmic template capable of modeling the multi-level parallelism and the temporal/spatial locality of multiprocessors and accelerators. This algorithmic template orchestrates a collection of parameterizable, linear optimization problems over a polyhedral space of semantics-preserving transformations. While the overall problem is not convex, effective algorithms can be derived from this template delivering unprecedented performance portability over GPU and multicore CPU. We discuss the rationale for this algorithmic template and validate it on representative computational kernels/benchmarks.
仿射调度中并行性和时间/空间局部性的冲突需求建模
尽管在该领域进行了数十年的工作,但有效的循环巢优化器和并行化器的构建仍然具有挑战性。由于循环密集型应用程序的多样性和现代处理器中复杂的内存/计算层次结构,优化启发式被拉向相互冲突的目标,突出显示缺乏系统的方法来优化局部性和并行性。考虑到这些对循环巢优化的冲突需求,我们提出了一种能够对多处理器和加速器的多层次并行性和时间/空间局部性建模的算法模板。该算法模板编排了一组可参数化的线性优化问题,这些问题分布在保持语义转换的多面体空间上。虽然整体问题不是凸的,但有效的算法可以从这个模板中派生出来,在GPU和多核CPU上提供前所未有的性能可移植性。我们讨论了这个算法模板的基本原理,并在代表性的计算内核/基准测试上验证了它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信