Self-sensing method for a switched reluctance motor using delta-sigma modulators and neural networks

Philipp Kappes, Immanuel Krueger, G. Griepentrog
{"title":"Self-sensing method for a switched reluctance motor using delta-sigma modulators and neural networks","authors":"Philipp Kappes, Immanuel Krueger, G. Griepentrog","doi":"10.1109/SLED.2017.8078430","DOIUrl":null,"url":null,"abstract":"A self-sensing method for switched reluctance motors (SRM) for low speed and stand-still is introduced in this paper. The approach utilizes current slopes excited by voltage pulses that are injected into idle phases. To obtain an undisturbed signal for rotor position estimation, a simple integration of the bit-stream output of the delta-sigma modulators in the current measurement path is applied. Thereafter a neural network approximates the actual rotor position from the integrated currents of the idle phases. In comparison with look-up-table based approaches multiple input signals for the approximation are used. The results are evaluated on a test-bench with an 8/6 SRM in open loop operation.","PeriodicalId":386486,"journal":{"name":"2017 IEEE International Symposium on Sensorless Control for Electrical Drives (SLED)","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Sensorless Control for Electrical Drives (SLED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLED.2017.8078430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A self-sensing method for switched reluctance motors (SRM) for low speed and stand-still is introduced in this paper. The approach utilizes current slopes excited by voltage pulses that are injected into idle phases. To obtain an undisturbed signal for rotor position estimation, a simple integration of the bit-stream output of the delta-sigma modulators in the current measurement path is applied. Thereafter a neural network approximates the actual rotor position from the integrated currents of the idle phases. In comparison with look-up-table based approaches multiple input signals for the approximation are used. The results are evaluated on a test-bench with an 8/6 SRM in open loop operation.
基于δ - σ调制器和神经网络的开关磁阻电机自传感方法
介绍了一种开关磁阻电动机低速静止状态下的自感知方法。该方法利用注入到空闲相位的电压脉冲激发的电流斜率。为了获得转子位置估计的无干扰信号,在电流测量路径上对δ - σ调制器的比特流输出进行简单积分。然后,一个神经网络从空闲相位的综合电流中近似出转子的实际位置。与基于查找表的方法相比,该方法使用了多个输入信号进行逼近。结果在8/6 SRM开环运行的试验台上进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信