POSE-VIWEPOINT ADAPTIVE OBJECT TRACKING VIA ONLINE LEARNING APPROACH

V. Mariappan, Hyung-O Kim, Minwoo Lee, Juphil Cho, J. Cha
{"title":"POSE-VIWEPOINT ADAPTIVE OBJECT TRACKING VIA ONLINE LEARNING APPROACH","authors":"V. Mariappan, Hyung-O Kim, Minwoo Lee, Juphil Cho, J. Cha","doi":"10.7236/IJASC.2015.4.2.20","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame with posture variation and camera view point adaptation by employing the non-adaptive random projections that preserve the structure of the image feature space of objects. The existing online tracking algorithms update models with features from recent video frames and the numerous issues remain to be addressed despite on the improvement in tracking. The data-dependent adaptive appearance models often encounter the drift problems because the online algorithms does not get the required amount of data for online learning. So, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame.","PeriodicalId":297506,"journal":{"name":"The International Journal of Advanced Smart Convergence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Advanced Smart Convergence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7236/IJASC.2015.4.2.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame with posture variation and camera view point adaptation by employing the non-adaptive random projections that preserve the structure of the image feature space of objects. The existing online tracking algorithms update models with features from recent video frames and the numerous issues remain to be addressed despite on the improvement in tracking. The data-dependent adaptive appearance models often encounter the drift problems because the online algorithms does not get the required amount of data for online learning. So, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame.
基于在线学习方法的姿态-视点自适应目标跟踪
在本文中,我们提出了一种有效的跟踪算法,该算法基于从具有姿态变化的视频帧中提取的特征和摄像机视点自适应的外观模型,该模型采用非自适应随机投影来保持物体图像特征空间的结构。现有的在线跟踪算法使用最新视频帧的特征来更新模型,尽管在跟踪方面有所改进,但仍有许多问题有待解决。由于在线算法不能获得在线学习所需的数据量,依赖于数据的自适应外观模型经常会遇到漂移问题。因此,我们提出了一种有效的跟踪算法,该算法基于从视频帧中提取的特征来建立外观模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信