On using rule induction in multiple classifiers with a combiner aggregation strategy

J. Stefanowski, Sławomir Nowaczyk
{"title":"On using rule induction in multiple classifiers with a combiner aggregation strategy","authors":"J. Stefanowski, Sławomir Nowaczyk","doi":"10.1109/ISDA.2005.74","DOIUrl":null,"url":null,"abstract":"The paper is an experimental study of using the rough sets based rule induction algorithm MODLEM in the framework of multiple classifiers. Particular attention is paid to using a meta-classifier called combiner, which learns how to aggregate answers of component classifiers. The experimental results confirm that the range of classification improvement for the combiner depends on the independence of errors made by the component classifiers. Moreover, we summarize the experience with using MODLEM in other multiple classifiers, namely the bagging and n/sup 2/ classifiers.","PeriodicalId":345842,"journal":{"name":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2005.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The paper is an experimental study of using the rough sets based rule induction algorithm MODLEM in the framework of multiple classifiers. Particular attention is paid to using a meta-classifier called combiner, which learns how to aggregate answers of component classifiers. The experimental results confirm that the range of classification improvement for the combiner depends on the independence of errors made by the component classifiers. Moreover, we summarize the experience with using MODLEM in other multiple classifiers, namely the bagging and n/sup 2/ classifiers.
基于组合聚合策略的多分类器规则归纳
本文对基于粗糙集的规则归纳算法MODLEM在多分类器框架下的应用进行了实验研究。特别注意使用称为combiner的元分类器,它学习如何聚合组件分类器的答案。实验结果表明,组合器的分类改进范围取决于各分量分类器误差的独立性。此外,我们还总结了在其他多分类器中使用MODLEM的经验,即bagging和n/sup 2/分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信