Automating anomaly detection for exploratory data analytics

Karun Thankachan
{"title":"Automating anomaly detection for exploratory data analytics","authors":"Karun Thankachan","doi":"10.1109/ICICI.2017.8365228","DOIUrl":null,"url":null,"abstract":"This paper discusses a design to automate the process of exploratory data analysis with an emphasis on outlier and anomaly detection. The paper discusses the domain of exploratory data analysis, the complexity involved in automating it and a solution leveraging the latest advances in computing to meet this. The solution details a framework that can accept data, understand the structure and type of variables, extract important variables and detect outliers or anomalies for understanding process bottlenecks. It takes advantage of big-data technologies and distributed computing (Hadoop and Spark) to make feasible the task of carrying out multiple lines of analysis and using intermediate results to drive analysis towards the desired goal. Statistical methods and visual data analytics form the core of the framework helping to automate exploratory data analysis, reducing time and focusing on the most valuable areas of concern in the data.","PeriodicalId":369524,"journal":{"name":"2017 International Conference on Inventive Computing and Informatics (ICICI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Inventive Computing and Informatics (ICICI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICI.2017.8365228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper discusses a design to automate the process of exploratory data analysis with an emphasis on outlier and anomaly detection. The paper discusses the domain of exploratory data analysis, the complexity involved in automating it and a solution leveraging the latest advances in computing to meet this. The solution details a framework that can accept data, understand the structure and type of variables, extract important variables and detect outliers or anomalies for understanding process bottlenecks. It takes advantage of big-data technologies and distributed computing (Hadoop and Spark) to make feasible the task of carrying out multiple lines of analysis and using intermediate results to drive analysis towards the desired goal. Statistical methods and visual data analytics form the core of the framework helping to automate exploratory data analysis, reducing time and focusing on the most valuable areas of concern in the data.
为探索性数据分析自动化异常检测
本文讨论了一种探索性数据分析过程的自动化设计,重点是异常点和异常检测。本文讨论了探索性数据分析领域,自动化数据分析的复杂性,以及利用最新计算进展来满足这一需求的解决方案。该解决方案详细描述了一个框架,该框架可以接受数据,理解变量的结构和类型,提取重要变量,并检测异常值或异常值,以了解流程瓶颈。它利用大数据技术和分布式计算(Hadoop和Spark),使执行多行分析并使用中间结果驱动分析朝着预期目标的任务变得可行。统计方法和可视化数据分析构成了框架的核心,有助于自动化探索性数据分析,减少时间并专注于数据中最有价值的关注领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信