Object Tracking Method Combined with Lightweight Hybrid Attention Siamese Network

Ruoyu Lou, Wu Yang, Yingjiang Li, Ling Lu
{"title":"Object Tracking Method Combined with Lightweight Hybrid Attention Siamese Network","authors":"Ruoyu Lou, Wu Yang, Yingjiang Li, Ling Lu","doi":"10.1109/ACAIT56212.2022.10137999","DOIUrl":null,"url":null,"abstract":"Aiming at the problem that the target tracking method of deep learning has a large number of model parameters and insufficient real-time performance, it is difficult to apply to mobile terminals or embedded devices with insufficient computing power. A lightweight hybrid attention-based twin network tracking algorithm is proposed. Firstly, based on MobileNetv3-Large network, group convolution and channel rearrangement are performed; then, in view of the problem that traditional attention mechanism only considers a single scope, this paper proposes a lightweight group-gated mixed attention (Group-gated mixed attention, GG); finally, GG is embedded in the Siamese network structure of this paper and the hierarchical feature fusion strategy is used to improve the tracking accuracy. Experiments show that the parameters of the proposed GG decrease by 26.2% compared with CBAM, decrease by 6.50% compared with SE, and increase Top-1 by 2.59% and 2.68% respectively; the experiments on the OTB100 and VOT2018 datasets demonstrate that the proposed algorithm is comparable to traditional tracking Compared with the algorithm, the accuracy and real-time performance have great advantages.","PeriodicalId":398228,"journal":{"name":"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACAIT56212.2022.10137999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problem that the target tracking method of deep learning has a large number of model parameters and insufficient real-time performance, it is difficult to apply to mobile terminals or embedded devices with insufficient computing power. A lightweight hybrid attention-based twin network tracking algorithm is proposed. Firstly, based on MobileNetv3-Large network, group convolution and channel rearrangement are performed; then, in view of the problem that traditional attention mechanism only considers a single scope, this paper proposes a lightweight group-gated mixed attention (Group-gated mixed attention, GG); finally, GG is embedded in the Siamese network structure of this paper and the hierarchical feature fusion strategy is used to improve the tracking accuracy. Experiments show that the parameters of the proposed GG decrease by 26.2% compared with CBAM, decrease by 6.50% compared with SE, and increase Top-1 by 2.59% and 2.68% respectively; the experiments on the OTB100 and VOT2018 datasets demonstrate that the proposed algorithm is comparable to traditional tracking Compared with the algorithm, the accuracy and real-time performance have great advantages.
结合轻量级混合注意力连体网络的目标跟踪方法
针对深度学习的目标跟踪方法模型参数较多,实时性不足的问题,难以应用于计算能力不足的移动终端或嵌入式设备。提出了一种轻量级的基于混合注意力的双网络跟踪算法。首先,基于MobileNetv3-Large网络,进行群卷积和信道重排;然后,针对传统注意机制只考虑单一范围的问题,提出了一种轻量级的群控混合注意(group-gated mixed attention, GG);最后,将GG嵌入到本文的Siamese网络结构中,并采用分层特征融合策略提高跟踪精度。实验表明,所提GG的参数比CBAM降低26.2%,比SE降低6.50%,Top-1分别提高2.59%和2.68%;在OTB100和VOT2018数据集上的实验表明,该算法与传统的跟踪算法相比,精度和实时性都有很大的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信