Strong higher order mutation-based test data generation

M. Harman, Yue Jia, W. Langdon
{"title":"Strong higher order mutation-based test data generation","authors":"M. Harman, Yue Jia, W. Langdon","doi":"10.1145/2025113.2025144","DOIUrl":null,"url":null,"abstract":"This paper introduces SHOM, a mutation-based test data generation approach that combines Dynamic Symbolic Execution and Search Based Software Testing. SHOM targets strong mutation adequacy and is capable of killing both first and higher order mutants. We report the results of an empirical study using 17 programs, including production industrial code from ABB and Daimler and open source code as well as previously studied subjects. SHOM achieved higher strong mutation adequacy than two recent mutation-based test data generation approaches, killing between 8% and 38% of those mutants left unkilled by the best performing previous approach.","PeriodicalId":184518,"journal":{"name":"ESEC/FSE '11","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"150","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESEC/FSE '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2025113.2025144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 150

Abstract

This paper introduces SHOM, a mutation-based test data generation approach that combines Dynamic Symbolic Execution and Search Based Software Testing. SHOM targets strong mutation adequacy and is capable of killing both first and higher order mutants. We report the results of an empirical study using 17 programs, including production industrial code from ABB and Daimler and open source code as well as previously studied subjects. SHOM achieved higher strong mutation adequacy than two recent mutation-based test data generation approaches, killing between 8% and 38% of those mutants left unkilled by the best performing previous approach.
强大的高阶基于突变的测试数据生成
本文介绍了基于动态符号执行和基于搜索的软件测试相结合的基于突变的测试数据生成方法SHOM。SHOM靶向强突变充足性,能够杀死一级和高阶突变体。我们报告了使用17个程序的实证研究结果,包括ABB和戴姆勒的生产工业代码和开源代码以及先前研究的主题。与最近的两种基于突变的测试数据生成方法相比,SHOM获得了更高的强突变充分性,杀死了8%至38%的未被先前最佳方法杀死的突变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信