{"title":"An Optimal Regression Algorithm for Piecewise Functions Expressed as Object-Oriented Programs","authors":"Juan Luo, A. Brodsky","doi":"10.1109/ICMLA.2010.149","DOIUrl":null,"url":null,"abstract":"Core Java is a framework which extends the programming language Java with built-in regression analysis, i.e., the capability to do parameter estimation for a function. Core Java is unique in that functional forms for regression analysis are expressed as first-class citizens, i.e., as Java programs, in which some parameters are not a priori known, but need to be learned from training sets provided as input. Typical applications of Core Java include calibration of parameters of computational processes, described as OO programs. If-then-else statements of Java language are naturally adopted to create piecewise functional forms of regression. Thus, minimization of the sum of least squared errors involves an optimization problem with a search space that is exponential to the size of learning set. In this paper, we propose a combinatorial restructuring algorithm which guarantees learning optimality and furthermore reduces the search space to be polynomial in the size of learning set, but exponential to the number of piece-wise bounds.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Core Java is a framework which extends the programming language Java with built-in regression analysis, i.e., the capability to do parameter estimation for a function. Core Java is unique in that functional forms for regression analysis are expressed as first-class citizens, i.e., as Java programs, in which some parameters are not a priori known, but need to be learned from training sets provided as input. Typical applications of Core Java include calibration of parameters of computational processes, described as OO programs. If-then-else statements of Java language are naturally adopted to create piecewise functional forms of regression. Thus, minimization of the sum of least squared errors involves an optimization problem with a search space that is exponential to the size of learning set. In this paper, we propose a combinatorial restructuring algorithm which guarantees learning optimality and furthermore reduces the search space to be polynomial in the size of learning set, but exponential to the number of piece-wise bounds.