{"title":"Properties of cellular neural networks in selected image processing applications","authors":"P. Kaluzny, S. Kukliński","doi":"10.1109/CNNA.1990.207513","DOIUrl":null,"url":null,"abstract":"Summary form only given. Concerns the use of stable analog cellular neural networks (CNN) for image processing. CNN architecture can be treated as a space-invariant iterative nonlinear filter. The authors compare CNNs and other techniques in image processing. The analysis is performed for two kinds of tasks for which nonlinear filters are commonly used: noise suppression and edge detection. Two synthesized test images, 64*64 pixels each, are used in experiments. One consists of solid blocks of different shapes and the other contains thin lines and sharp corners. The images are added with zero-mean Gaussian noise and impulsive noise. The efficiency of noise removal is examined. The limiter type M filter, a type of median filter, is considered. Edge detection by various filters and operators is compared.<<ETX>>","PeriodicalId":142909,"journal":{"name":"IEEE International Workshop on Cellular Neural Networks and their Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Cellular Neural Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1990.207513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Summary form only given. Concerns the use of stable analog cellular neural networks (CNN) for image processing. CNN architecture can be treated as a space-invariant iterative nonlinear filter. The authors compare CNNs and other techniques in image processing. The analysis is performed for two kinds of tasks for which nonlinear filters are commonly used: noise suppression and edge detection. Two synthesized test images, 64*64 pixels each, are used in experiments. One consists of solid blocks of different shapes and the other contains thin lines and sharp corners. The images are added with zero-mean Gaussian noise and impulsive noise. The efficiency of noise removal is examined. The limiter type M filter, a type of median filter, is considered. Edge detection by various filters and operators is compared.<>