Effective fault simulation of GPU’s permanent faults for reliability estimation of CNNs

Juan-David Guerrero-Balaguera, Robert Limas Sierra, M. Reorda
{"title":"Effective fault simulation of GPU’s permanent faults for reliability estimation of CNNs","authors":"Juan-David Guerrero-Balaguera, Robert Limas Sierra, M. Reorda","doi":"10.1109/IOLTS56730.2022.9897823","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNNs) and Graphic Processing Units (GPUs) are now increasingly adopted in many cutting edge safety-critical applications. Consequently, it is crucial to evaluate the reliability of these systems, since the hardware can be affected by several phenomena (e.g., wear out of the device), producing permanent defects in the GPU. These defects may induce wrong outcomes in the CNN that may endanger the application. Traditionally, the study of the effects of permanent faults on CNNs has been approached by resorting to application-level fault injection (e.g., acting on the weights). However, this approach has restricted scope, and it may not reveal the actual vulnerabilities in the GPU device. Hence, a more accurate evaluation of the fault effects is required, considering more in-depth details of the device’s hardware. This work introduces a more elaborated experimental evaluation of the impact of GPU’s permanent faults on the reliability of a CNN by resorting to a Software-Implemented Fault Injection(SWIFI) strategy, considering faults at the hardware level. The results of the fault simulation campaigns we performed on the GPU data-path cores are compared with those at the application level, proving that the latter ones are generally optimistic.","PeriodicalId":274595,"journal":{"name":"2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS56730.2022.9897823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Convolutional Neural Networks (CNNs) and Graphic Processing Units (GPUs) are now increasingly adopted in many cutting edge safety-critical applications. Consequently, it is crucial to evaluate the reliability of these systems, since the hardware can be affected by several phenomena (e.g., wear out of the device), producing permanent defects in the GPU. These defects may induce wrong outcomes in the CNN that may endanger the application. Traditionally, the study of the effects of permanent faults on CNNs has been approached by resorting to application-level fault injection (e.g., acting on the weights). However, this approach has restricted scope, and it may not reveal the actual vulnerabilities in the GPU device. Hence, a more accurate evaluation of the fault effects is required, considering more in-depth details of the device’s hardware. This work introduces a more elaborated experimental evaluation of the impact of GPU’s permanent faults on the reliability of a CNN by resorting to a Software-Implemented Fault Injection(SWIFI) strategy, considering faults at the hardware level. The results of the fault simulation campaigns we performed on the GPU data-path cores are compared with those at the application level, proving that the latter ones are generally optimistic.
对GPU永久故障进行有效的故障仿真,用于cnn的可靠性估计
卷积神经网络(cnn)和图形处理单元(gpu)现在越来越多地应用于许多尖端的安全关键应用。因此,评估这些系统的可靠性至关重要,因为硬件可能受到几种现象的影响(例如,设备磨损),从而在GPU中产生永久性缺陷。这些缺陷可能会导致CNN出现错误的结果,从而危及应用。传统上,永久性故障对cnn影响的研究是通过应用级故障注入(例如,作用于权重)来进行的。然而,这种方法的范围有限,它可能无法揭示GPU设备中的实际漏洞。因此,需要更准确地评估故障影响,同时考虑到设备硬件更深入的细节。这项工作引入了一个更详细的实验评估,通过采用软件实现故障注入(SWIFI)策略,考虑硬件层面的故障,GPU的永久故障对CNN可靠性的影响。我们在GPU数据路径核心上进行的故障模拟活动的结果与应用层的结果进行了比较,证明后者总体上是乐观的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信