Developing a fast supervised optimum-path forest based on coreset

Hamid Bostani, M. Sheikhan, B. Mahboobi
{"title":"Developing a fast supervised optimum-path forest based on coreset","authors":"Hamid Bostani, M. Sheikhan, B. Mahboobi","doi":"10.1109/AISP.2017.8324076","DOIUrl":null,"url":null,"abstract":"Optimum-path forest (OPF) is an effective graph-based machine learning that simplifies the pattern recognition problems into the partitioning the corresponding derived graphs of the input datasets. The amounts of the samples in the input datasets and, consequently the size of the node set of their corresponding derived graphs has a major effect on the speed of OPF. In this study a novel version of OPF is introduced which utilizes coreset approach for reducing the scale of the input dataset. From the aspect of the computational geometry, coreset is a small set of points that includes the best representative points of the original point set with regard to a geometric objective function. Our method finds the most informative vertices (samples) by proposing a novel incremental coreset construction algorithm. The experimental results of the proposed method reduces the input data samples, and the execution times of the construction and the classification phases of OPF by 80%, 60%, and 12%, respectively, in contrast to the traditional OPF.","PeriodicalId":386952,"journal":{"name":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2017.8324076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Optimum-path forest (OPF) is an effective graph-based machine learning that simplifies the pattern recognition problems into the partitioning the corresponding derived graphs of the input datasets. The amounts of the samples in the input datasets and, consequently the size of the node set of their corresponding derived graphs has a major effect on the speed of OPF. In this study a novel version of OPF is introduced which utilizes coreset approach for reducing the scale of the input dataset. From the aspect of the computational geometry, coreset is a small set of points that includes the best representative points of the original point set with regard to a geometric objective function. Our method finds the most informative vertices (samples) by proposing a novel incremental coreset construction algorithm. The experimental results of the proposed method reduces the input data samples, and the execution times of the construction and the classification phases of OPF by 80%, 60%, and 12%, respectively, in contrast to the traditional OPF.
基于核心集的快速监督最优路径森林
最优路径森林(OPF)是一种有效的基于图的机器学习方法,它将模式识别问题简化为输入数据集的相应派生图的划分。输入数据集中的样本数量以及相应的衍生图的节点集的大小对OPF的速度有重要影响。在这项研究中,引入了一种新的OPF版本,它利用核心集方法来减少输入数据集的规模。从计算几何的角度来看,核心集是一个小的点集,它包含了原始点集关于几何目标函数的最佳代表点。我们的方法通过提出一种新的增量核心集构建算法来找到信息量最大的顶点(样本)。实验结果表明,与传统的OPF相比,该方法减少了输入数据样本,减少了OPF构建和分类阶段的执行次数,分别减少了80%、60%和12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信