{"title":"Selection of a Nominal Device Using Functional Data Analysis","authors":"Nevin Martin, T. Buchheit, Shahed Reza","doi":"10.1109/DSAA.2018.00049","DOIUrl":null,"url":null,"abstract":"Nominal behavior selection of an electronic device from a measured dataset is often difficult. Device characteristics are rarely monotonic and choosing the single device measurement which best represents the center of a distribution across all regions of operation is neither obvious nor easy to interpret. Often, a device modeler uses a degree of subjectivity when selecting nominal device behavior from a dataset of measurements on a group of devices. This paper proposes applying a functional data approach to estimate the mean and nominal device of an experimental dataset. This approach was applied to a dataset of electrical measurements on a set of commercially available Zener diodes and proved to more accurately represent the average device characteristics than a point-wise calculation of the mean. It also enabled an objective method for selecting a nominal device from a dataset of device measurements taken across the full operating region of the Zener diode.","PeriodicalId":208455,"journal":{"name":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2018.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Nominal behavior selection of an electronic device from a measured dataset is often difficult. Device characteristics are rarely monotonic and choosing the single device measurement which best represents the center of a distribution across all regions of operation is neither obvious nor easy to interpret. Often, a device modeler uses a degree of subjectivity when selecting nominal device behavior from a dataset of measurements on a group of devices. This paper proposes applying a functional data approach to estimate the mean and nominal device of an experimental dataset. This approach was applied to a dataset of electrical measurements on a set of commercially available Zener diodes and proved to more accurately represent the average device characteristics than a point-wise calculation of the mean. It also enabled an objective method for selecting a nominal device from a dataset of device measurements taken across the full operating region of the Zener diode.