A Case for Noisy Shallow Gate-based Circuits in Quantum Machine Learning

Patrick Selig, Niall Murphy, Ashwin Sundareswaran R, D. Redmond, Simon Caton
{"title":"A Case for Noisy Shallow Gate-based Circuits in Quantum Machine Learning","authors":"Patrick Selig, Niall Murphy, Ashwin Sundareswaran R, D. Redmond, Simon Caton","doi":"10.1109/ICRC53822.2021.00015","DOIUrl":null,"url":null,"abstract":"There is increasing interest in the development of gate- based quantum circuits for the training of machine learning models. Yet, little is understood concerning the parameters of circuit design, and the effects of noise and other measurement errors on the performance of quantum machine learning models. In this paper, we explore the practical implications of key circuit design parameters (number of qubits, depth etc.) using several standard machine learning datasets and IBM's Qiskit simulator. In total we evaluate over 6500 unique circuits with n ≈ 120700 individual runs. We find that in general shallow (low depth) wide (more qubits) circuit topologies tend to outperform deeper ones in settings without noise. We also explore the implications and effects of different notions of noise and discuss circuit topologies that are more / less robust to noise for classification machine learning tasks. Based on the findings we define guidelines for circuit topologies that show near-term promise for the realisation of quantum machine learning algorithms using gate-based NISQ quantum computer.","PeriodicalId":139766,"journal":{"name":"2021 International Conference on Rebooting Computing (ICRC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC53822.2021.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

There is increasing interest in the development of gate- based quantum circuits for the training of machine learning models. Yet, little is understood concerning the parameters of circuit design, and the effects of noise and other measurement errors on the performance of quantum machine learning models. In this paper, we explore the practical implications of key circuit design parameters (number of qubits, depth etc.) using several standard machine learning datasets and IBM's Qiskit simulator. In total we evaluate over 6500 unique circuits with n ≈ 120700 individual runs. We find that in general shallow (low depth) wide (more qubits) circuit topologies tend to outperform deeper ones in settings without noise. We also explore the implications and effects of different notions of noise and discuss circuit topologies that are more / less robust to noise for classification machine learning tasks. Based on the findings we define guidelines for circuit topologies that show near-term promise for the realisation of quantum machine learning algorithms using gate-based NISQ quantum computer.
量子机器学习中基于噪声浅门电路的研究
人们对基于门的量子电路的发展越来越感兴趣,用于训练机器学习模型。然而,关于电路设计的参数,以及噪声和其他测量误差对量子机器学习模型性能的影响,人们知之甚少。在本文中,我们使用几个标准的机器学习数据集和IBM的Qiskit模拟器探讨了关键电路设计参数(量子比特数,深度等)的实际含义。我们总共评估了超过6500个独特的电路,n≈120700个单独的运行。我们发现,一般来说,在没有噪声的情况下,浅(低深度)宽(更多量子位)电路拓扑往往优于深电路拓扑。我们还探讨了不同噪声概念的含义和影响,并讨论了用于分类机器学习任务的对噪声的鲁棒性更高/更低的电路拓扑。基于这些发现,我们定义了电路拓扑的指导方针,这些指导方针显示了使用基于门的NISQ量子计算机实现量子机器学习算法的近期前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信