Wavelet-based Disturbance Classification with Robot Ann Application Example

V. Hölttä, Joonas Varso
{"title":"Wavelet-based Disturbance Classification with Robot Ann Application Example","authors":"V. Hölttä, Joonas Varso","doi":"10.1109/CIRA.2005.1554273","DOIUrl":null,"url":null,"abstract":"In a certain robot control benchmark it is known that certain types of disturbances occur. This paper presents a classifier that gives a fuzzy estimate of the disturbance that is currently affecting the process. The classifier uses the discrete wavelet transform to extract features from the measurement signal. Based on the features, a fuzzy inference system gives an estimate of the proportion of different disturbances that are present in the signal. The output of the classifier is used to select the controller such that a controller that is tuned for a particular disturbance is used for controlling the process during the disturbance","PeriodicalId":162553,"journal":{"name":"2005 International Symposium on Computational Intelligence in Robotics and Automation","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2005.1554273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In a certain robot control benchmark it is known that certain types of disturbances occur. This paper presents a classifier that gives a fuzzy estimate of the disturbance that is currently affecting the process. The classifier uses the discrete wavelet transform to extract features from the measurement signal. Based on the features, a fuzzy inference system gives an estimate of the proportion of different disturbances that are present in the signal. The output of the classifier is used to select the controller such that a controller that is tuned for a particular disturbance is used for controlling the process during the disturbance
基于小波的机器人神经网络干扰分类应用实例
在某个机器人控制基准中,已知会发生某些类型的干扰。本文提出了一种分类器,对当前影响过程的干扰进行模糊估计。该分类器使用离散小波变换从测量信号中提取特征。基于这些特征,模糊推理系统给出了信号中存在的不同干扰的比例估计。分类器的输出用于选择控制器,使得针对特定干扰进行调谐的控制器用于在干扰期间控制过程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信