Object Trajectory Proposal via Hierarchical Volume Grouping

Xu Sun, Yuantian Wang, Tongwei Ren, Zhi Liu, Zhengjun Zha, Gangshan Wu
{"title":"Object Trajectory Proposal via Hierarchical Volume Grouping","authors":"Xu Sun, Yuantian Wang, Tongwei Ren, Zhi Liu, Zhengjun Zha, Gangshan Wu","doi":"10.1145/3206025.3206059","DOIUrl":null,"url":null,"abstract":"Object trajectory proposal aims to locate category-independent object candidates in videos with a limited number of trajectories,i.e.,bounding box sequences. Most existing methods, which derive from combining object proposal with tracking, cannot handle object trajectory proposal effectively due to the lack of comprehensive objectness measurement through analyzing spatio-temporal characteristics over a whole video. In this paper, we propose a novel object trajectory proposal method using hierarchical volume grouping. Specifically, we first represent a given video with hierarchical volumes by mapping hierarchical regions with optical flow. Then, we filter the short volumes and background volumes, and combinatorially group the retained volumes into object candidates. Finally, we rank the object candidates using a multi-modal fusion scoring mechanism, which incorporates both appearance objectness and motion objectness, and generate the bounding boxes of the object candidates with the highest scores as the trajectory proposals. We validated the proposed method on a dataset consisting of 200 videos from ILSVRC2016-VID. The experimental results show that our method is superior to the state-of-the-art object trajectory proposal methods.","PeriodicalId":224132,"journal":{"name":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206025.3206059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Object trajectory proposal aims to locate category-independent object candidates in videos with a limited number of trajectories,i.e.,bounding box sequences. Most existing methods, which derive from combining object proposal with tracking, cannot handle object trajectory proposal effectively due to the lack of comprehensive objectness measurement through analyzing spatio-temporal characteristics over a whole video. In this paper, we propose a novel object trajectory proposal method using hierarchical volume grouping. Specifically, we first represent a given video with hierarchical volumes by mapping hierarchical regions with optical flow. Then, we filter the short volumes and background volumes, and combinatorially group the retained volumes into object candidates. Finally, we rank the object candidates using a multi-modal fusion scoring mechanism, which incorporates both appearance objectness and motion objectness, and generate the bounding boxes of the object candidates with the highest scores as the trajectory proposals. We validated the proposed method on a dataset consisting of 200 videos from ILSVRC2016-VID. The experimental results show that our method is superior to the state-of-the-art object trajectory proposal methods.
基于分层卷分组的目标轨迹建议
目标轨迹建议的目的是在轨迹数量有限的视频中定位与类别无关的候选对象。,边界框序列。现有的目标建议与跟踪相结合的方法,由于缺乏通过分析整个视频的时空特征对目标进行全面测量,无法有效处理目标轨迹建议。本文提出了一种基于分层体分组的目标轨迹建议方法。具体而言,我们首先通过将分层区域与光流映射来表示具有分层体积的给定视频。然后,我们对短卷和背景卷进行筛选,并将保留的卷组合成候选对象。最后,我们使用一种融合了外观和运动目标的多模态融合评分机制对候选对象进行排序,并生成得分最高的候选对象的边界框作为轨迹建议。我们在ILSVRC2016-VID的200个视频数据集上验证了所提出的方法。实验结果表明,该方法优于现有的目标轨迹建议方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信