{"title":"Predictability of cellular programs implemented with CAMELot","authors":"G. Folino, G. Spezzano","doi":"10.1109/EMPDP.2001.905076","DOIUrl":null,"url":null,"abstract":"In this paper we present a performance model to analyse the scalability and predict the performance of cellular programs developed by the CAMELot system. CAMELot is a problem solving environment that uses the cellular automata model for modelling and simulating dynamic complex phenomena. The environment supports CARPET, a purpose-built language for programming and steering cellular applications. The performance model proposed is based on the isoefficiency method. The isoefficiency is a scalability measure that determines whether a parallel system can preserve its efficiency by increasing the problem size as the number of processors is scaled. By isoefficiency analysis we can test a program's performance on a few processors and then predict its performance on a larger number of processors. It also lets us study system behavior when other hardware parameters, such as processor and communication speeds change. Scalability prediction examples for two-dimensional and three-dimensional cellular programs on a Meiko CS-2 parallel machine are given.","PeriodicalId":262971,"journal":{"name":"Proceedings Ninth Euromicro Workshop on Parallel and Distributed Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth Euromicro Workshop on Parallel and Distributed Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMPDP.2001.905076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper we present a performance model to analyse the scalability and predict the performance of cellular programs developed by the CAMELot system. CAMELot is a problem solving environment that uses the cellular automata model for modelling and simulating dynamic complex phenomena. The environment supports CARPET, a purpose-built language for programming and steering cellular applications. The performance model proposed is based on the isoefficiency method. The isoefficiency is a scalability measure that determines whether a parallel system can preserve its efficiency by increasing the problem size as the number of processors is scaled. By isoefficiency analysis we can test a program's performance on a few processors and then predict its performance on a larger number of processors. It also lets us study system behavior when other hardware parameters, such as processor and communication speeds change. Scalability prediction examples for two-dimensional and three-dimensional cellular programs on a Meiko CS-2 parallel machine are given.