A comparative study on texture features used for segmentation of images rich in texture

D. P. Dogra, K. Tripathy, A. K. Majumdar, S. Sural
{"title":"A comparative study on texture features used for segmentation of images rich in texture","authors":"D. P. Dogra, K. Tripathy, A. K. Majumdar, S. Sural","doi":"10.1109/ICSIPA.2009.5478673","DOIUrl":null,"url":null,"abstract":"A comparative study based method to select appropriate texture feature for image segmentation using K-means clustering algorithm is proposed in this paper. We study and record the performances based on three features namely, Contourlet, Gabor and Tamura. An enhanced version of Tamura feature is proposed that produces better result than the conventional one. Results of our experiment suggest that, for a given class of images, segmentation algorithm using Contourlet and Gabor with similar feature space perform equally well. On the other hand, performance of conventional Tamura feature lacks consistency but Tamura with multiple coarseness and directions improves segmentation.","PeriodicalId":400165,"journal":{"name":"2009 IEEE International Conference on Signal and Image Processing Applications","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2009.5478673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A comparative study based method to select appropriate texture feature for image segmentation using K-means clustering algorithm is proposed in this paper. We study and record the performances based on three features namely, Contourlet, Gabor and Tamura. An enhanced version of Tamura feature is proposed that produces better result than the conventional one. Results of our experiment suggest that, for a given class of images, segmentation algorithm using Contourlet and Gabor with similar feature space perform equally well. On the other hand, performance of conventional Tamura feature lacks consistency but Tamura with multiple coarseness and directions improves segmentation.
纹理特征用于丰富纹理图像分割的比较研究
提出了一种基于比较研究的k均值聚类算法纹理特征选择方法。我们根据Contourlet、Gabor和Tamura三个特征来研究和记录表演。提出了一种增强的Tamura特征,其结果优于传统的Tamura特征。我们的实验结果表明,对于给定的一类图像,使用Contourlet和Gabor具有相似特征空间的分割算法表现同样良好。另一方面,传统的Tamura特征性能缺乏一致性,而具有多个粗糙度和方向的Tamura特征提高了分割效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信