{"title":"Machine printed handwritten text discrimination using Radon transform and SVM classifier","authors":"Et-Tahir Zemouri, Y. Chibani","doi":"10.1109/ISDA.2011.6121840","DOIUrl":null,"url":null,"abstract":"Discrimination of machine printed and handwritten text is deemed as major problem in the recognition of the mixed texts. In this paper, we address the problem of identifying each type by using the Radon transform and Support Vector Machines, which is conducted at three steps: preprocessing, feature generation and classification. New set of features is generated from each word using the Radon transform. Classification is used to distinguish printed text from handwritten. The proposed system is tested on IAM databases. The recognition rate of the proposed method is calculated to be over 98%.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2011.6121840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Discrimination of machine printed and handwritten text is deemed as major problem in the recognition of the mixed texts. In this paper, we address the problem of identifying each type by using the Radon transform and Support Vector Machines, which is conducted at three steps: preprocessing, feature generation and classification. New set of features is generated from each word using the Radon transform. Classification is used to distinguish printed text from handwritten. The proposed system is tested on IAM databases. The recognition rate of the proposed method is calculated to be over 98%.