Machine printed handwritten text discrimination using Radon transform and SVM classifier

Et-Tahir Zemouri, Y. Chibani
{"title":"Machine printed handwritten text discrimination using Radon transform and SVM classifier","authors":"Et-Tahir Zemouri, Y. Chibani","doi":"10.1109/ISDA.2011.6121840","DOIUrl":null,"url":null,"abstract":"Discrimination of machine printed and handwritten text is deemed as major problem in the recognition of the mixed texts. In this paper, we address the problem of identifying each type by using the Radon transform and Support Vector Machines, which is conducted at three steps: preprocessing, feature generation and classification. New set of features is generated from each word using the Radon transform. Classification is used to distinguish printed text from handwritten. The proposed system is tested on IAM databases. The recognition rate of the proposed method is calculated to be over 98%.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2011.6121840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Discrimination of machine printed and handwritten text is deemed as major problem in the recognition of the mixed texts. In this paper, we address the problem of identifying each type by using the Radon transform and Support Vector Machines, which is conducted at three steps: preprocessing, feature generation and classification. New set of features is generated from each word using the Radon transform. Classification is used to distinguish printed text from handwritten. The proposed system is tested on IAM databases. The recognition rate of the proposed method is calculated to be over 98%.
基于Radon变换和SVM分类器的机器打印手写体文本识别
机器印刷和手写文本的识别是混合文本识别中的一个主要问题。在本文中,我们利用Radon变换和支持向量机解决了识别每种类型的问题,该问题分预处理,特征生成和分类三个步骤进行。使用Radon变换从每个单词生成新的特征集。分类法用于区分印刷文本和手写文本。该系统在IAM数据库上进行了测试。经计算,该方法的识别率可达98%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信