Rahul Gupta, Lisa Bauer, Kai-Wei Chang, J. Dhamala, A. Galstyan, Palash Goyal, Qian Hu, Avni Khatri, Rohit Parimi, Charith S. Peris, Apurv Verma, R. Zemel, Premkumar Natarajan
{"title":"Incorporating Fairness in Large Scale NLU Systems","authors":"Rahul Gupta, Lisa Bauer, Kai-Wei Chang, J. Dhamala, A. Galstyan, Palash Goyal, Qian Hu, Avni Khatri, Rohit Parimi, Charith S. Peris, Apurv Verma, R. Zemel, Premkumar Natarajan","doi":"10.1145/3539597.3575785","DOIUrl":null,"url":null,"abstract":"NLU models power several user facing experiences such as conversations agents and chat bots. Building NLU models typically consist of 3 stages: a) building or finetuning a pre-trained model b) distilling or fine-tuning the pre-trained model to build task specific models and, c) deploying the task-specific model to production. In this presentation, we will identify fairness considerations that can be incorporated in the aforementioned three stages in the life-cycle of NLU model building: (i) selection/building of a large scale language model, (ii) distillation/fine-tuning the large model into task specific model and, (iii) deployment of the task specific model. We will present select metrics that can be used to quantify fairness in NLU models and fairness enhancement techniques that can be deployed in each of these stages. Finally, we will share some recommendations to successfully implement fairness considerations when building an industrial scale NLU system.","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3575785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
NLU models power several user facing experiences such as conversations agents and chat bots. Building NLU models typically consist of 3 stages: a) building or finetuning a pre-trained model b) distilling or fine-tuning the pre-trained model to build task specific models and, c) deploying the task-specific model to production. In this presentation, we will identify fairness considerations that can be incorporated in the aforementioned three stages in the life-cycle of NLU model building: (i) selection/building of a large scale language model, (ii) distillation/fine-tuning the large model into task specific model and, (iii) deployment of the task specific model. We will present select metrics that can be used to quantify fairness in NLU models and fairness enhancement techniques that can be deployed in each of these stages. Finally, we will share some recommendations to successfully implement fairness considerations when building an industrial scale NLU system.