Accelerating Sparse Deep Neural Networks on FPGAs

Sitao Huang, Carl Pearson, R. Nagi, Jinjun Xiong, Deming Chen, Wen-mei W. Hwu
{"title":"Accelerating Sparse Deep Neural Networks on FPGAs","authors":"Sitao Huang, Carl Pearson, R. Nagi, Jinjun Xiong, Deming Chen, Wen-mei W. Hwu","doi":"10.1109/HPEC.2019.8916419","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) have been widely adopted in many domains, including computer vision, natural language processing, and medical care. Recent research reveals that sparsity in DNN parameters can be exploited to reduce inference computational complexity and improve network quality. However, sparsity also introduces irregularity and extra complexity in data processing, which make the accelerator design challenging. This work presents the design and implementation of a highly flexible sparse DNN inference accelerator on FPGA. Our proposed inference engine can be easily configured to be used in both mobile computing and high-performance computing scenarios. Evaluation shows our proposed inference engine effectively accelerates sparse DNNs and outperforms CPU solution by up to 4.7 $\\times$ in terms of energy efficiency.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Deep neural networks (DNNs) have been widely adopted in many domains, including computer vision, natural language processing, and medical care. Recent research reveals that sparsity in DNN parameters can be exploited to reduce inference computational complexity and improve network quality. However, sparsity also introduces irregularity and extra complexity in data processing, which make the accelerator design challenging. This work presents the design and implementation of a highly flexible sparse DNN inference accelerator on FPGA. Our proposed inference engine can be easily configured to be used in both mobile computing and high-performance computing scenarios. Evaluation shows our proposed inference engine effectively accelerates sparse DNNs and outperforms CPU solution by up to 4.7 $\times$ in terms of energy efficiency.
fpga上的稀疏深度神经网络加速
深度神经网络已广泛应用于计算机视觉、自然语言处理和医疗保健等领域。最近的研究表明,深度神经网络参数的稀疏性可以用来降低推理计算复杂度和提高网络质量。然而,稀疏性也在数据处理中引入了不规则性和额外的复杂性,这给加速器的设计带来了挑战。本文在FPGA上设计并实现了一种高度灵活的稀疏DNN推理加速器。我们提出的推理引擎可以很容易地配置为用于移动计算和高性能计算场景。评估表明,我们提出的推理引擎有效地加速了稀疏dnn,并且在能源效率方面优于CPU解决方案高达4.7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信