Detecting overlapping communities of weighted networks by central figure algorithm

Chao Tong, Zhongyu Xie, Xiaoyun Mo, J. Niu, Yan Zhang
{"title":"Detecting overlapping communities of weighted networks by central figure algorithm","authors":"Chao Tong, Zhongyu Xie, Xiaoyun Mo, J. Niu, Yan Zhang","doi":"10.1109/ComComAp.2014.7017161","DOIUrl":null,"url":null,"abstract":"In recent years, the community structures in complex networks has become a research hotspot. In this paper, we focus on weighted networks and propose a unique algorithm on detecting overlapping communities of weighted networks based on central figure with considerable accuracy. In the algorithm, all the central figures are first extracted. Then to each central figure, nodes are absorbed by closures and weak ties. The experiments are based on LFR Benchmark. Through the experiment, we can know that the performance of our algorithm is better than that of COPRA (Community Overlap Propagation Algorithm) algorithm.","PeriodicalId":422906,"journal":{"name":"2014 IEEE Computers, Communications and IT Applications Conference","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Computers, Communications and IT Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComComAp.2014.7017161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In recent years, the community structures in complex networks has become a research hotspot. In this paper, we focus on weighted networks and propose a unique algorithm on detecting overlapping communities of weighted networks based on central figure with considerable accuracy. In the algorithm, all the central figures are first extracted. Then to each central figure, nodes are absorbed by closures and weak ties. The experiments are based on LFR Benchmark. Through the experiment, we can know that the performance of our algorithm is better than that of COPRA (Community Overlap Propagation Algorithm) algorithm.
基于中心图算法的加权网络重叠社区检测
近年来,复杂网络中的社团结构已成为研究热点。本文以加权网络为研究对象,提出了一种独特的基于中心图的加权网络重叠社区检测算法。在该算法中,首先提取所有中心图形。然后对于每个中心图形,节点被闭包和弱联系所吸收。实验是基于LFR基准的。通过实验可知,该算法的性能优于COPRA (Community Overlap Propagation algorithm)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信