P. Stella, R. Ross, B.S. Smith, G. Glenn, K.S. Sharmit
{"title":"Mars Global Surveyor (MGS) high temperature survival solar array","authors":"P. Stella, R. Ross, B.S. Smith, G. Glenn, K.S. Sharmit","doi":"10.1109/PVSC.1996.564001","DOIUrl":null,"url":null,"abstract":"The MGS mission is one of the first major planetary missions conducted under the new NASA Faster, Better, Cheaper guidelines. Ironically, mission requirements make the MGS solar array one of the most challenging designs built for NASA. Not only will the array include silicon and GaAs/Ge panels, but the solar array will be used to aerobrake the spacecraft in the upper regions of the Martian atmosphere. Consequently, even though a mission to Mars is normally typified by cold temperatures, aerobraking imposes a high temperature requirement of nearly 180/spl deg/C, higher than that experienced by any previous array. The array size is tightly constrained by mass and area. Since the aerobraking occurs early in the mission, it is necessary to subsequently survive up to 20000 lower temperature thermal cycles. Furthermore, the location of a magnetometer directly on the array structure requires the minimization of circuit induced magnetic moments. This paper provides an overview of the array design and performance. In addition, the high temperature capable design and development are discussed in detail.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1996.564001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The MGS mission is one of the first major planetary missions conducted under the new NASA Faster, Better, Cheaper guidelines. Ironically, mission requirements make the MGS solar array one of the most challenging designs built for NASA. Not only will the array include silicon and GaAs/Ge panels, but the solar array will be used to aerobrake the spacecraft in the upper regions of the Martian atmosphere. Consequently, even though a mission to Mars is normally typified by cold temperatures, aerobraking imposes a high temperature requirement of nearly 180/spl deg/C, higher than that experienced by any previous array. The array size is tightly constrained by mass and area. Since the aerobraking occurs early in the mission, it is necessary to subsequently survive up to 20000 lower temperature thermal cycles. Furthermore, the location of a magnetometer directly on the array structure requires the minimization of circuit induced magnetic moments. This paper provides an overview of the array design and performance. In addition, the high temperature capable design and development are discussed in detail.