Human Activity Recognition from Skeletal Data using Covariance Descriptor and Temporal Subspace Clustering

Guntru Prasanth Kumar, M. S. Subodh Raj, S. N. George
{"title":"Human Activity Recognition from Skeletal Data using Covariance Descriptor and Temporal Subspace Clustering","authors":"Guntru Prasanth Kumar, M. S. Subodh Raj, S. N. George","doi":"10.1109/IAICT55358.2022.9887486","DOIUrl":null,"url":null,"abstract":"Human Activity Recognition (HAR) is one of the most active research areas in fields of computer vision and pattern analysis. Most of the existing HAR algorithms are devised in supervised manner by excluding the temporal aspects of skeletal data which is a key parameter in HAR. Motivated by this, we have designed and developed an efficient subspace clustering algorithm for HAR by explicitly considering the time series aspects of human activity data. Designing this algorithm in an unsupervised manner is another challenge that we are dealing with. The work involves design of an efficient covariance descriptor for encoding the skeletal data. Later a subspace clustering algorithm called temporal subspace clustering (TSC) algorithm is designed by exploiting the principles of Laplacian regularization and dictionary learning. Experimental analysis shows that the proposed method outperforms the state-of-the-art methods employed for HAR.","PeriodicalId":154027,"journal":{"name":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT55358.2022.9887486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human Activity Recognition (HAR) is one of the most active research areas in fields of computer vision and pattern analysis. Most of the existing HAR algorithms are devised in supervised manner by excluding the temporal aspects of skeletal data which is a key parameter in HAR. Motivated by this, we have designed and developed an efficient subspace clustering algorithm for HAR by explicitly considering the time series aspects of human activity data. Designing this algorithm in an unsupervised manner is another challenge that we are dealing with. The work involves design of an efficient covariance descriptor for encoding the skeletal data. Later a subspace clustering algorithm called temporal subspace clustering (TSC) algorithm is designed by exploiting the principles of Laplacian regularization and dictionary learning. Experimental analysis shows that the proposed method outperforms the state-of-the-art methods employed for HAR.
基于协方差描述子和时间子空间聚类的骨骼数据人体活动识别
人体活动识别(HAR)是计算机视觉和模式分析领域中最活跃的研究领域之一。现有的HAR算法大多以监督方式设计,排除了骨骼数据的时间方面,而时间方面是HAR的关键参数。受此启发,我们通过明确考虑人类活动数据的时间序列方面,设计并开发了一种高效的HAR子空间聚类算法。以无监督的方式设计这个算法是我们正在处理的另一个挑战。这项工作包括设计一个有效的协方差描述符来编码骨架数据。随后,利用拉普拉斯正则化和字典学习的原理,设计了一种子空间聚类算法——时间子空间聚类算法。实验分析表明,该方法优于当前最先进的HAR方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信