Cooperative localization and tracking with a camera-based WSN

J. M. Sánchez-Matamoros, J. R. Martínez-De Dios, A. Ollero
{"title":"Cooperative localization and tracking with a camera-based WSN","authors":"J. M. Sánchez-Matamoros, J. R. Martínez-De Dios, A. Ollero","doi":"10.1109/ICMECH.2009.4957244","DOIUrl":null,"url":null,"abstract":"This paper presents a vision-based system for cooperative object detection, localization and tracking using Wireless Sensor Networks (WSNs). The proposed system exploits the distributed sensing capabilities, communication infrastructure and parallel computing capabilities of the WSN. To reduce the bandwidth requirements, the images captured are processed at each camera node with the objective of extracting the location of the object on each image plane, which is transmitted to the WSN. The measures from all the camera nodes are processed by means of sensor fusion techniques such as Maximum Likelihood (ML) and Extended Kalman Filter (EKF). The paper describes hardware and software aspects and presents some experimental results.","PeriodicalId":414967,"journal":{"name":"2009 IEEE International Conference on Mechatronics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECH.2009.4957244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

This paper presents a vision-based system for cooperative object detection, localization and tracking using Wireless Sensor Networks (WSNs). The proposed system exploits the distributed sensing capabilities, communication infrastructure and parallel computing capabilities of the WSN. To reduce the bandwidth requirements, the images captured are processed at each camera node with the objective of extracting the location of the object on each image plane, which is transmitted to the WSN. The measures from all the camera nodes are processed by means of sensor fusion techniques such as Maximum Likelihood (ML) and Extended Kalman Filter (EKF). The paper describes hardware and software aspects and presents some experimental results.
基于摄像头的WSN协同定位与跟踪
提出了一种基于视觉的无线传感器网络协同目标检测、定位和跟踪系统。该系统充分利用了无线传感器网络的分布式感知能力、通信基础设施和并行计算能力。为了减少带宽需求,在每个相机节点对捕获的图像进行处理,目的是提取物体在每个图像平面上的位置,并将其传输到WSN。通过最大似然(ML)和扩展卡尔曼滤波(EKF)等传感器融合技术对所有摄像机节点的测量进行处理。本文从硬件和软件两方面进行了介绍,并给出了一些实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信