On shortening construction of self-orthogonal quaternary codes

Luobin Guo, Qiang Fu, Ruihu Li, Xueliang Li
{"title":"On shortening construction of self-orthogonal quaternary codes","authors":"Luobin Guo, Qiang Fu, Ruihu Li, Xueliang Li","doi":"10.1109/IWSDA.2015.7458423","DOIUrl":null,"url":null,"abstract":"For a given quaternary self-orthogonal (SO) code, using information of weights of codewords in the dual of the binary code generated by the supports of this SO code, one can construct new quaternary SO code by shortening method. Two methods of determining weights of codewords in the dual of the binary support code of a given large length SO code are presented. Using these methods, we construct many SO codes from a quantum 286-cap in PG(6, 4), and deduce existence of many quantum caps in PG(6, 4) and good quantum codes of distance 4.","PeriodicalId":371829,"journal":{"name":"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA.2015.7458423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For a given quaternary self-orthogonal (SO) code, using information of weights of codewords in the dual of the binary code generated by the supports of this SO code, one can construct new quaternary SO code by shortening method. Two methods of determining weights of codewords in the dual of the binary support code of a given large length SO code are presented. Using these methods, we construct many SO codes from a quantum 286-cap in PG(6, 4), and deduce existence of many quantum caps in PG(6, 4) and good quantum codes of distance 4.
自正交四元码的缩短构造
对于给定的四元自正交码,利用由该四元自正交码的支撑所生成的二进制码对偶中的码字权重信息,可以用缩短法构造新的四元自正交码。给出了确定给定大长度SO码的二进制支持码对偶码字权重的两种方法。利用这些方法,我们从PG(6,4)中的一个量子286-cap构造了多个SO码,并推导出PG(6,4)中存在多个量子cap和距离为4的良好量子码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信