Analysis of visitor's behavior from web log using web log expert tool

Manoj Kumar, Meenu
{"title":"Analysis of visitor's behavior from web log using web log expert tool","authors":"Manoj Kumar, Meenu","doi":"10.1109/ICECA.2017.8212820","DOIUrl":null,"url":null,"abstract":"Web usage mining is a data mining technique. There are large amount of data are stored on the internet. When user search any particular information by search engine like Google, Bing etc. is very difficult because the complexity of web pages is increases day by day. Web usage mining plays an important role to solve this problem. In web usage mining we are creating a suitable pattern according to the user's visiting behavior. The goal of this paper is to implement a web log Expert tool on web server log file (an educational institution web log data) to find the behavioral pattern and profiles of users interacting with a web site. The web mining usage pattern of an Technical Institution web data. Web related data is coteries in to three parts namely web log, access log, error log and proxy log data and collect the data in web server and implemented a web log expert. Our experimental results help to predict and identify the number of visitor for the website and improve the website usability. The web related log data are three types, namely proxy log data, web log data, and error log data. We exploration the activity statistic by daily based hourly based week and monthly based report of web usage pattern. The web usage mining is playing an important role to improve the availability of information of your web site.","PeriodicalId":222768,"journal":{"name":"2017 International conference of Electronics, Communication and Aerospace Technology (ICECA)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International conference of Electronics, Communication and Aerospace Technology (ICECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA.2017.8212820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Web usage mining is a data mining technique. There are large amount of data are stored on the internet. When user search any particular information by search engine like Google, Bing etc. is very difficult because the complexity of web pages is increases day by day. Web usage mining plays an important role to solve this problem. In web usage mining we are creating a suitable pattern according to the user's visiting behavior. The goal of this paper is to implement a web log Expert tool on web server log file (an educational institution web log data) to find the behavioral pattern and profiles of users interacting with a web site. The web mining usage pattern of an Technical Institution web data. Web related data is coteries in to three parts namely web log, access log, error log and proxy log data and collect the data in web server and implemented a web log expert. Our experimental results help to predict and identify the number of visitor for the website and improve the website usability. The web related log data are three types, namely proxy log data, web log data, and error log data. We exploration the activity statistic by daily based hourly based week and monthly based report of web usage pattern. The web usage mining is playing an important role to improve the availability of information of your web site.
利用网络日志专家工具对网络日志中的访问者行为进行分析
Web使用挖掘是一种数据挖掘技术。有大量的数据存储在互联网上。当用户通过谷歌、必应等搜索引擎搜索任何特定信息时,由于网页的复杂性日益增加,因此非常困难。Web使用挖掘对解决这一问题起着重要的作用。在网络使用挖掘中,我们根据用户的访问行为来创建一个合适的模式。本文的目标是在web服务器日志文件(一个教育机构的web日志数据)上实现一个web日志专家工具,以发现用户与网站交互的行为模式和特征。某技术机构web数据的web挖掘使用模式。Web相关数据分为Web日志、访问日志、错误日志和代理日志数据三部分,并将数据收集到Web服务器上,实现了Web日志专家。我们的实验结果有助于预测和识别网站的访问者数量,提高网站的可用性。web相关的日志数据分为代理日志数据、web日志数据和错误日志数据三种。我们通过每天、每小时、每周和每月的网络使用模式报告来探索活动统计。网络使用挖掘对于提高网站信息的可用性起着重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信