A parallel sampling-PSO-multi-core-K-means algorithm using mapreduce

Abdelhak Bousbaci, Nadjet Kamel
{"title":"A parallel sampling-PSO-multi-core-K-means algorithm using mapreduce","authors":"Abdelhak Bousbaci, Nadjet Kamel","doi":"10.1109/HIS.2014.7086185","DOIUrl":null,"url":null,"abstract":"Clustering is partitioning data into groups, such that data in the same group are similar. Many clustering algorithms are proposed in the literature. K-means is the most used one because of its implementation simplicity and efficiency. Many clustering algorithms are based on the K-means algorithms aiming to improve execution time or clustering quality or both of them. Improving clustering quality can be done by an optimal selection of the initial centroids using for example meta-heuristics. Improving execution time can be performed using parallelism. In this paper, we propose a parallel hybrid K-means based on Google's MapReduce framework for the parallelism and the PSO meta-heuristics for the choice of the initial centroids. This algorithm is used to cluster multi-dimensional data sets. The results proved that using a network of machines to process data improves the execution time and the clustering quality.","PeriodicalId":161103,"journal":{"name":"2014 14th International Conference on Hybrid Intelligent Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2014.7086185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Clustering is partitioning data into groups, such that data in the same group are similar. Many clustering algorithms are proposed in the literature. K-means is the most used one because of its implementation simplicity and efficiency. Many clustering algorithms are based on the K-means algorithms aiming to improve execution time or clustering quality or both of them. Improving clustering quality can be done by an optimal selection of the initial centroids using for example meta-heuristics. Improving execution time can be performed using parallelism. In this paper, we propose a parallel hybrid K-means based on Google's MapReduce framework for the parallelism and the PSO meta-heuristics for the choice of the initial centroids. This algorithm is used to cluster multi-dimensional data sets. The results proved that using a network of machines to process data improves the execution time and the clustering quality.
基于mapreduce的并行采样- pso -多核- k -means算法
聚类是将数据划分成组,使同一组中的数据相似。文献中提出了许多聚类算法。K-means是最常用的一种方法,因为它实现简单,效率高。许多聚类算法基于k均值算法,旨在提高执行时间或聚类质量或两者兼而有之。提高聚类质量可以通过使用例如元启发式的初始质心的最佳选择来完成。可以使用并行性来改进执行时间。在本文中,我们提出了一种基于Google MapReduce框架的并行混合K-means和基于PSO元启发式的初始质心选择。该算法用于对多维数据集进行聚类。结果证明,使用机器网络来处理数据可以提高执行时间和聚类质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信