Algorithm structure optimization by choosing operators in multiobjective genetic local search

Yuki Tanigaki, Hiroyuki Masuda, Yu Setoguchi, Y. Nojima, H. Ishibuchi
{"title":"Algorithm structure optimization by choosing operators in multiobjective genetic local search","authors":"Yuki Tanigaki, Hiroyuki Masuda, Yu Setoguchi, Y. Nojima, H. Ishibuchi","doi":"10.1109/CEC.2015.7256980","DOIUrl":null,"url":null,"abstract":"An important implementation issue in the design of hybrid evolutionary multiobjective optimization algorithms such as multiobjective genetic local search (MOGLS) is how to combine local search with evolutionary algorithms. It has been demonstrated that the performance of MOGLS strongly depends on the order of global search and local search. A balance between local search and global search also affects its search ability. We can use three ideas for designing high-performance MOGLS algorithms. One idea is to choose one of two options: local search after global search or global search after local search. In general, their appropriate order depends on the problem. Another idea is to use tuned parameter values to appropriately specify their balance. The other idea is to change both their order and the parameter values during the execution of MOGLS. This idea can be implemented by dividing the whole search period into some sub-periods (i.e., dividing all generations into some intervals of generations). The appropriate order and parameter values are assigned to each sub-period. In this paper, we propose off-line algorithm structure optimization for MOGLS. The effectiveness of the proposed idea is examined by computational experiments on a two-objective knapsack problem and a two-objective flowshop scheduling problem. Based on experimental results, we discuss the importance of structure optimization of MOGLS.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7256980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An important implementation issue in the design of hybrid evolutionary multiobjective optimization algorithms such as multiobjective genetic local search (MOGLS) is how to combine local search with evolutionary algorithms. It has been demonstrated that the performance of MOGLS strongly depends on the order of global search and local search. A balance between local search and global search also affects its search ability. We can use three ideas for designing high-performance MOGLS algorithms. One idea is to choose one of two options: local search after global search or global search after local search. In general, their appropriate order depends on the problem. Another idea is to use tuned parameter values to appropriately specify their balance. The other idea is to change both their order and the parameter values during the execution of MOGLS. This idea can be implemented by dividing the whole search period into some sub-periods (i.e., dividing all generations into some intervals of generations). The appropriate order and parameter values are assigned to each sub-period. In this paper, we propose off-line algorithm structure optimization for MOGLS. The effectiveness of the proposed idea is examined by computational experiments on a two-objective knapsack problem and a two-objective flowshop scheduling problem. Based on experimental results, we discuss the importance of structure optimization of MOGLS.
基于算子选择的多目标遗传局部搜索算法结构优化
在多目标遗传局部搜索(MOGLS)等混合进化多目标优化算法的设计中,如何将局部搜索与进化算法相结合是一个重要的实现问题。研究表明,MOGLS的性能很大程度上取决于全局搜索和局部搜索的顺序。局部搜索和全局搜索之间的平衡也会影响其搜索能力。我们可以使用三个思想来设计高性能MOGLS算法。一个想法是在两个选项中选择一个:局部搜索后全局搜索或全局搜索后本地搜索。一般来说,它们的适当顺序取决于问题。另一个想法是使用调优的参数值来适当地指定它们的平衡。另一个想法是在MOGLS执行期间改变它们的顺序和参数值。这个想法可以通过将整个搜索周期划分为一些子周期来实现(即,将所有代划分为一定的代间隔)。为每个子周期分配适当的顺序和参数值。本文提出了MOGLS的离线算法结构优化。通过对一个双目标背包问题和一个双目标流水车间调度问题的计算实验,验证了该方法的有效性。根据实验结果,讨论了MOGLS结构优化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信