Segmentation of noisy images using information theory based approaches

F. Galland, P. Réfrégier
{"title":"Segmentation of noisy images using information theory based approaches","authors":"F. Galland, P. Réfrégier","doi":"10.1109/IPTA.2008.4743794","DOIUrl":null,"url":null,"abstract":"In this presentation, we propose to discuss some interesting properties of segmentation techniques based on the minimization of the stochastic complexity. We emphasize the general framework provided by the minimization of the stochastic complexity for segmentation purpose, some of its main advantages and also some of the motivating perspectives that are open by such approaches. We illustrate this presentation with different results obtained in our research group with polygonal parametric shape descriptions, level set models of contours and polygonal grids to partition images into an arbitrary number of homogeneous regions.","PeriodicalId":384072,"journal":{"name":"2008 First Workshops on Image Processing Theory, Tools and Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First Workshops on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2008.4743794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this presentation, we propose to discuss some interesting properties of segmentation techniques based on the minimization of the stochastic complexity. We emphasize the general framework provided by the minimization of the stochastic complexity for segmentation purpose, some of its main advantages and also some of the motivating perspectives that are open by such approaches. We illustrate this presentation with different results obtained in our research group with polygonal parametric shape descriptions, level set models of contours and polygonal grids to partition images into an arbitrary number of homogeneous regions.
基于信息论的噪声图像分割方法
在本报告中,我们建议讨论基于随机复杂度最小化的分割技术的一些有趣的特性。我们强调了最小化随机复杂性为分割目的提供的一般框架,它的一些主要优点和一些激励的观点,这些方法是开放的。我们用我们的研究小组用多边形参数形状描述、轮廓的水平集模型和多边形网格将图像划分为任意数量的均匀区域来说明这个演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信