{"title":"Deep Feature Guided Image Retargeting","authors":"Jinan Wu, Rong Xie, Li Song, Bo Liu","doi":"10.1109/VCIP47243.2019.8966008","DOIUrl":null,"url":null,"abstract":"Image retargeting is the technique to display images via devices with various aspect ratios and sizes. Traditional content-aware retargeting methods rely on low-level features to predict pixel-wise importance and can hardly preserve both the structure lines and salient regions of the source image. To address this problem, we propose a novel adaptive image warping approach which integrates with deep convolutional neural network. In the proposed method, a visual importance map and a foreground mask map are generated by a pre-trained network. The two maps and other constraints guide the warping process to yield retargeted results with less distortions. Extensive experiments in terms of visual quality and a user study are carried out on the widely used RetargetMe dataset. Experimental results show that our method outperforms current state-of-art image retargeting methods.","PeriodicalId":388109,"journal":{"name":"2019 IEEE Visual Communications and Image Processing (VCIP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP47243.2019.8966008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Image retargeting is the technique to display images via devices with various aspect ratios and sizes. Traditional content-aware retargeting methods rely on low-level features to predict pixel-wise importance and can hardly preserve both the structure lines and salient regions of the source image. To address this problem, we propose a novel adaptive image warping approach which integrates with deep convolutional neural network. In the proposed method, a visual importance map and a foreground mask map are generated by a pre-trained network. The two maps and other constraints guide the warping process to yield retargeted results with less distortions. Extensive experiments in terms of visual quality and a user study are carried out on the widely used RetargetMe dataset. Experimental results show that our method outperforms current state-of-art image retargeting methods.