GA tuning of Fuzzy Controller for MIMO system

A. Abdel Hadi, A. Elshafei
{"title":"GA tuning of Fuzzy Controller for MIMO system","authors":"A. Abdel Hadi, A. Elshafei","doi":"10.1109/ICCES.2006.320480","DOIUrl":null,"url":null,"abstract":"Genetic algorithms have demonstrated considerable success in providing good solutions to many hard optimization problems. For such problems, exact algorithms that always find an optimal solution are only useful for small optimization problems, so heuristic algorithms such as the genetic algorithm must be used in practice. In this paper, we apply the genetic algorithm to the nonlinear MIMO problem of complex objective function. We compare the genetic algorithm with the exact optimization results. Our empirical results indicate that by using the genetic algorithm is able to find an optimal solution at speed orders of magnitude faster than exact algorithms. Simulation results of a two-link robot arm are reported with different objective functions to confirm the validity of our assumption.","PeriodicalId":261853,"journal":{"name":"2006 International Conference on Computer Engineering and Systems","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Computer Engineering and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2006.320480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Genetic algorithms have demonstrated considerable success in providing good solutions to many hard optimization problems. For such problems, exact algorithms that always find an optimal solution are only useful for small optimization problems, so heuristic algorithms such as the genetic algorithm must be used in practice. In this paper, we apply the genetic algorithm to the nonlinear MIMO problem of complex objective function. We compare the genetic algorithm with the exact optimization results. Our empirical results indicate that by using the genetic algorithm is able to find an optimal solution at speed orders of magnitude faster than exact algorithms. Simulation results of a two-link robot arm are reported with different objective functions to confirm the validity of our assumption.
MIMO系统模糊控制器的遗传整定
遗传算法在为许多困难的优化问题提供良好的解决方案方面取得了相当大的成功。对于这类问题,总是找到最优解的精确算法只对小型优化问题有用,因此在实践中必须使用启发式算法,如遗传算法。本文将遗传算法应用于复杂目标函数的非线性多输入多输出问题。我们将遗传算法与精确的优化结果进行了比较。我们的实证结果表明,使用遗传算法能够以比精确算法快几个数量级的速度找到最优解。以不同目标函数的双连杆机械臂为例进行了仿真,验证了假设的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信