Simplified Intelligence Single Particle Optimization Based Neural Network for Digit Recognition

Jiarui Zhou, Z. Ji, L. Shen
{"title":"Simplified Intelligence Single Particle Optimization Based Neural Network for Digit Recognition","authors":"Jiarui Zhou, Z. Ji, L. Shen","doi":"10.1109/CCPR.2008.74","DOIUrl":null,"url":null,"abstract":"To overcome the drawback of overly dependence on the input parameters in intelligence single particle optimization (ISPO), an improved algorithm, called simplified intelligence single particle optimization (SISPO), is proposed in this paper. While maintaining similar performance as ISPO, no special parameter settings are required by SISPO. The proposed SISPO was successfully applied to train neural network classifier for digit recognition. Experimental results demonstrated that, the proposed neural network training algorithm, simplified intelligence single particle optimization neural network (SISPONN), achieved less training error and test error than traditional BP algorithms like gradient methods.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

To overcome the drawback of overly dependence on the input parameters in intelligence single particle optimization (ISPO), an improved algorithm, called simplified intelligence single particle optimization (SISPO), is proposed in this paper. While maintaining similar performance as ISPO, no special parameter settings are required by SISPO. The proposed SISPO was successfully applied to train neural network classifier for digit recognition. Experimental results demonstrated that, the proposed neural network training algorithm, simplified intelligence single particle optimization neural network (SISPONN), achieved less training error and test error than traditional BP algorithms like gradient methods.
基于简化智能单粒子优化的神经网络数字识别
针对智能单粒子优化(ISPO)过于依赖输入参数的缺点,提出了一种改进算法——简化智能单粒子优化(SISPO)。在保持与ISPO类似的性能的同时,SISPO不需要特殊的参数设置。该方法已成功应用于数字识别神经网络分类器的训练。实验结果表明,所提出的神经网络训练算法——简化智能单粒子优化神经网络(SISPONN),与梯度方法等传统BP算法相比,训练误差和测试误差较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信