Exploring different rule quality evaluation functions in ACO-based classification algorithms

Khalid M. Salama, A. M. Abdelbar
{"title":"Exploring different rule quality evaluation functions in ACO-based classification algorithms","authors":"Khalid M. Salama, A. M. Abdelbar","doi":"10.1109/SIS.2011.5952574","DOIUrl":null,"url":null,"abstract":"The μAnt-Miner algorithm is an extension of the well-known Ant-Miner classification rule discovery algorithm. μAnt-Miner utilizes multiple pheromone types, one for each permitted rule class. An ant would first select the rule class and then deposit the corresponding type of pheromone. In this paper, we explore the use of different rule quality evaluation functions for rule quality assessment prior to pheromone update. The aim of this investigation is to discover how the use of different evaluation function affects the output model in terms of predictive accuracy and model size. In our experimental results, we use 10 different rule quality evaluation functions on 13 benchmark datasets, and identify a Pareto frontier of 4 evaluation functions.","PeriodicalId":175889,"journal":{"name":"2011 IEEE Symposium on Swarm Intelligence","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2011.5952574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The μAnt-Miner algorithm is an extension of the well-known Ant-Miner classification rule discovery algorithm. μAnt-Miner utilizes multiple pheromone types, one for each permitted rule class. An ant would first select the rule class and then deposit the corresponding type of pheromone. In this paper, we explore the use of different rule quality evaluation functions for rule quality assessment prior to pheromone update. The aim of this investigation is to discover how the use of different evaluation function affects the output model in terms of predictive accuracy and model size. In our experimental results, we use 10 different rule quality evaluation functions on 13 benchmark datasets, and identify a Pareto frontier of 4 evaluation functions.
探索基于蚁群算法的不同规则质量评价函数
μAnt-Miner算法是对著名的Ant-Miner分类规则发现算法的扩展。μAnt-Miner使用多种信息素类型,每种允许的规则类使用一种信息素。蚂蚁会先选择规则类,然后投放相应类型的信息素。在本文中,我们探索了在信息素更新之前使用不同的规则质量评估函数进行规则质量评估。本研究的目的是发现不同评估函数的使用如何在预测精度和模型大小方面影响输出模型。在实验结果中,我们在13个基准数据集上使用了10个不同的规则质量评价函数,并确定了4个评价函数的Pareto边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信