3D seismic waveform classification study based on high-level semantic feature

Xiaohan Du, Feng Qian, Xiangqin Ou
{"title":"3D seismic waveform classification study based on high-level semantic feature","authors":"Xiaohan Du, Feng Qian, Xiangqin Ou","doi":"10.5220/0005402600290033","DOIUrl":null,"url":null,"abstract":"With the improvement of Natural energy exploration technologies, the Seismic interpretation member need to deal with more and more information and parameters. How to better use seismic characteristic parameter to detect hydrocarbon becomes increasingly complex. In this article, we deeply studied the seismic waveform classification, and propose a seismic waveform classification method based combine various characters. After reducing the dimensions of seismic wave, we classify it using the high-level semantic feature extraction technique in pattern recognition. Experiments proved that, the classification result improved in continuity and details, and reduced the redundancy of seismic signal, increased performance of classification.","PeriodicalId":404783,"journal":{"name":"2015 1st International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 1st International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005402600290033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the improvement of Natural energy exploration technologies, the Seismic interpretation member need to deal with more and more information and parameters. How to better use seismic characteristic parameter to detect hydrocarbon becomes increasingly complex. In this article, we deeply studied the seismic waveform classification, and propose a seismic waveform classification method based combine various characters. After reducing the dimensions of seismic wave, we classify it using the high-level semantic feature extraction technique in pattern recognition. Experiments proved that, the classification result improved in continuity and details, and reduced the redundancy of seismic signal, increased performance of classification.
基于高级语义特征的三维地震波形分类研究
随着自然能源勘探技术的进步,地震解释人员需要处理越来越多的信息和参数。如何更好地利用地震特征参数进行油气探测变得越来越复杂。本文对地震波形分类进行了深入研究,提出了一种结合各种特征的地震波形分类方法。在对地震波进行降维后,采用模式识别中的高级语义特征提取技术对其进行分类。实验证明,分类结果在连续性和细节性上都有所提高,减少了地震信号的冗余,提高了分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信